期刊文献+

基于二次散射非线性混合模型的矿物填图方法 被引量:6

Mineral mapping based on secondary scattering mixture model
下载PDF
导出
摘要 传统的遥感地质填图方法较少考虑到一个像元中多种地物共生存在的情况,因此所填图件难以反映矿物的分布特征。针对线性混合模型解混精度不高的问题,使用二次散射非线性混合模型对高光谱数据进行光谱解混,并在此基础上,提出了k(k≥2)类地物的填图规则。采用美国内华达州Cuprite地区AVIRIS数据进行填图实验,将其结果与Clark等的填图结果进行对比。实验结果表明:与线性模型的矿物填图相比,基于二次散射非线性混合模型所填图件更加接近矿物的真实分布;使用k(k≥2)类矿物填图规则的填图结果细节丰富,与Clark等人的填图结果吻合度高。 Traditional geological mapping methods usually cannot conduct mapping for the whole study area and takes little account to the situation that a variety of features has symbiotic combination in one pixel, which makes it difficult to reflect the complex geological distribution characteristics. Since the unmixing accuracy of the linear model cannot meet actual application need, the secondary scattering model was used to the unmixing of hyperspectral data. On such a basis, this paper proposed k (k ≥2) class mapping rules based on the unmixing result. The Nevada Cuprite AVIRIS data were used in the experiment, and actual mapping results obtained by Clark et al. were taken as the reference. The comparison results have shown that mapping results based on the secondary scattering mixture model are closer to actual ground feature distribution than those based on the linear model and, in comparison with the results from one class mapping rule, the results using k (k≥2) class mapping rules have richer details and are closer to the results obtained by Clark et al.
出处 《国土资源遥感》 CSCD 北大核心 2014年第2期60-68,共9页 Remote Sensing for Land & Resources
基金 国家自然科学基金项目(编号:41272359 41072245) 教育部博士点基金(编号:20120003110032)共同资助
关键词 高光谱 光谱解混 二次散射模型 填图规则 矿物填图 hyperspectral imagery spectral unmixing secondary scattering model mapping rules mineral map-ping
  • 相关文献

参考文献20

  • 1Nascimento J M P,Bioucas-Dias J M.Nonlinear mixture model for hyperspectral unmixing[C]//SPIE Europe Remote Sensing.International Society for Optics and Photonics,2009:74770I-74770I.
  • 2Ju J C,Kolaczyk E D,Gopal S.Gaussian mixture discriminant anlaysis and sub-pixel land cover characterization in remote sensing[J].Remote Sensing of Environment,2003,84(4):550-560.
  • 3Iordache M D,Bioucas-Dias J M,Plaza A.Sparse unmixing of hyperspectral data[J].IEEE Transactions on Geoscience and Remote Sensing,2011,49(6):2014-2039.
  • 4Heinz D C.Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery[J].IEEE Transactions on Geoscience and Remote Sensing,2001,39(3):529-545.
  • 5RSI(Research Systems Inc.).ENVI User's guide Version 4.0[Z].Boulder,CO 80301 USA,2003.
  • 6AVIRIS data of Cuprite district,America.http ://aviris. jpl. nasa.gov/html/aviris, freedata, html.
  • 7Vane G,Green R O,Chrien T G,et al.The airborne visible/infrared imaging spectrometer(AVIRIS)[J].Remote Sensing of Environment,1993,44(2):127-143.
  • 8Clark,Swayze.Summaries of the 6th annual JPL airborne earth science workshop march 4-8,1996[Z].http://speclab, cr. usgs.gov/map, intro, html.
  • 9张良培,张立福.高光谱遥感[M].北京:测绘出版社,2011:1-3.
  • 10王润生,甘甫平,闫柏琨,杨苏明,王青华.高光谱矿物填图技术与应用研究[J].国土资源遥感,2010,22(1):1-13. 被引量:92

二级参考文献83

共引文献128

同被引文献49

引证文献6

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部