期刊文献+

基于改进Hausdorff距离的图像配准方法 被引量:12

Image registration method based on improved Hausdorff distance
下载PDF
导出
摘要 针对多尺度遥感图像灰度差异大的特点,利用特征集形状进行配准,提出了一种改进的Hausdorff距离及相应的图像匹配算法。首先采用基于尺度不变特征转换(scale-invariant feature transform,SIFT)的特征提取方法,提取多尺度图像间的尺度不变特征;然后利用Hausdorff距离作为适应度函数,通过遗传算法(genetic algorithm,GA)寻求图像间的几何变换参数;最后将待配准图像经过几何变换以及重采样与参考图像匹配,实现多尺度遥感图像的配准。实验结果表明,改进的Hausdorff距离算法与传统的Hausdorff相比,具有较高的配准精度和较快的配准速度,且稳定性和抗噪性更高,更适合用于图像配准。 In consideration of the features of remarkable difference in the gray-scale of the remote sensing image with multi-scales, this paper presents an image registration method with improved Hausdorff distance based on scale-invariant to solve the registration of multi -source remote sensing images. According to the method, the scale-invariant features of multi-scale images were firstly extracted by using the feature extraction method based on scale-invariant feature transform ( SIFT ) , and then the Hausdorff distance was used as the fitness function to seek for geometric image transformation parameters with the help of genetic algorithm( GA) . At last,the image to be registered was re -sampled by using the transformation parameters and matched with the references image. The experimental results show that, compared with the traditional method of Hausdorff distance, the new method has higher registration accuracy and stability, and is more suitable for image registration.
出处 《国土资源遥感》 CSCD 北大核心 2014年第2期93-98,共6页 Remote Sensing for Land & Resources
关键词 HAUSDORFF距离 图像配准 遗传算法( GA) 尺度不变特征转换( SIFT) Hausdorff distance image registration genetic algorithm (GA) scale - invariant feature transform(SIFT)
  • 相关文献

参考文献11

  • 1Fonseca L M G,Manjunath B S.Registration techniques for multisensor remotely sensed imagery[J].Photogrammetric Engineering and Remote Sensing,1996,62(9):1049-1056.
  • 2Huttenlocher D P,Klanderman G A,Rucklidge W A.Comparing images using the Hausdorff distance[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1993,15(9):850-863.
  • 3Huttenlocher D P,Rucklidge W J.A multi-resolution technique for comparing images using the Hausdorff distance[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1993,26(14):705-706.
  • 4Dubuisson M P,Jain A K.A modified Hausdorff distance for object matching[C]//Proceedings of 12th International Conference on Pattern Recognition.Jerusalem,Israel,1994:566-568.
  • 5Sim D G,Kwon O K,Park R H.Object matching algorithms using robust Hausdorff distance measures[J].IEEE Transactions on Image Processing,1998,8(3):425-429.
  • 6Lowe D G.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110.
  • 7Holland J H.Adaptation in natural and artificial systems[M].Ann Arbor:University of Michigan Press,1975:30-58.
  • 8沈大伟,段会川.基于LTS Hausdorff距离与遗传算法的图像配准方法[J].电子技术应用,2007,33(7):64-66. 被引量:5
  • 9百度百科.特征提取[EB/OL].[2013-04-06].http ://baike. baidu. com/view/2086290. htm.
  • 10百度百科.SIFT变换[EB/OL].[2013-04-06].http ://baike. baidu. com/view/2832304. htm.

二级参考文献4

  • 1HUTTENLOCHER D P,KLANDERMAN G, RUCKLIDGE W J.Comparing images using the hausdorff distance.IEEE Transactions on Pattern Analysis and Machine Intelligence[J], 1993, (15):850-863.
  • 2HUTTENLOCHER D P,RUCKLIDGE W J.A multi-resolution technique for comparing images using the Hausdorff distance.IEEE Transactions un Pattern Analysis and Machine Intelligence[J], 1993 ,(14):705-706.
  • 3SIM D G,KWON O K,PARK R H.Object matching algorithms using robust hausdorff distance measures.IEEE Transactions On Image Processing[J], 2004,15(3) :425-428.
  • 4HOLLAND J H.Adaptation in natural and artificial system[M]. Ann Arbor : University of Michigan Press, 1975 : 30-58.

共引文献5

同被引文献128

引证文献12

二级引证文献88

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部