期刊文献+

异构信息网络的分类研究

ON CLASSIFICATION OF HETEROGENEOUS INFORMATION NETWORKS
下载PDF
导出
摘要 异构信息网络在生活中无处不在,并且逐渐起着非常重要的作用。如何在信息网络里分类这些节点,对节点进行排名,已成为研究的热点问题。结合排名和分类方法,提出一种新的基于排名的迭代分类框架,建立一个基于图形的排名模型,使计算的排名分布在每一类的对象中。在每次迭代中,根据当前的排序结果,排名算法中使用图形结构的调整,使子网对应于特定的类被强调,而网络的其余部分被削弱。实验证明,整合分类排名不仅产生更准确的数据分类方法,而且在每一类中,能提供有意义的对象排名,比传统分类更有效。 Heterogeneous information networks exist everywhere in real life, and gradually play very important roles. How to classify these nodes in information networks and to rank them has become a research focus. By combining ranking and classification methods together, in this paper we present a new ranking-based iterative classification framework, build a graph-based ranking model, and make the calculated ranks distribute in every type of object. In every iteration, according to current ranking results, in ranking algorithm the graph structure adjustment is Used, this makes the subnets corresponding to a specific class are emphasised, and the rest of the network is weakened. Experiment proves that the integrated classification ranking not only results in more accurate data classification method, furthermore, in each category it can provide meaningful object ranking as well, which is more effective than traditional classifications.
作者 池云
出处 《计算机应用与软件》 CSCD 北大核心 2014年第6期330-333,共4页 Computer Applications and Software
关键词 异构信息网络 分类 排名 HeteroKeneous information network Classification Ranking
  • 相关文献

参考文献29

  • 1Cao B, Liu N , Yang Q. Transfer learning for collective link prediction in multiple heterogeneous domains[ C ]//Proceedings of the 27th Inter- national Conference on Machine learning,2010 : 159 - 166.
  • 2Sun Y, Yu Y, Han J. Ranking-based clustering of heterogeneous in- formation networks with star network schema [ C ]//Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, 2009:797 - 806.
  • 3Han J. Mining heterogeneous information networks by exploring the power of links[ C ]. Discovery Science. Springer Berlin Heidelberg, 2009 : 13 - 30.
  • 4Deng H, Han J, Zhao B, et al. Probabilistic topic models with biased propagation on heterogeneous information networks [ C ]//Proceedings of the 17th ACM SIGKDD international conference on knowledge dis-covery and data mining. ACM ,2011 : 1271 - 1279.
  • 5Delbru R, Toupikov N, Catasta M, et al. Hierarchical link analysis for ranking web data [ M ]. The Semantic Web: Research and Applica- tions. Springer Berlin Heidelberg,2010:225 - 239.
  • 6Gao B, Liu T Y, Liu Y, et al. Page importance computation based on Markov processes[ J ]. Information retrieval ,2011,14 (5) :488 - 514.
  • 7Kang C, Yadrevu S, Zhang R, et al. Ranking related entities for web search queries[ C ]//Proceedings of the 20th international conference companion on Worldwide web. ACM,2011:67 - 68.
  • 8Sun Y, Norick B, Han J, et al. Integrating meta-path selection with user-guided object clustering in heterogeneous information networks [ C]//Proceedings of the 18th ACM SIGKDD international conference on knowledge discovery and data mining. ACM,2012 : 1348 - 1356.
  • 9Yu X, Sun Y, Zhao P, et al. Query-driven discovery of semantically similar substructures in heterogeneous networks[ C ]//Proceedings of the 18th ACM SIGKDD international conference on knowledge discov- ery and data mining. ACM, 2012:1500- 1503.
  • 10李艾丹,薛中玉,李春梅.异构信息知识挖掘与可视化分析系统架构模型解析[J].中国科技论坛,2012(10):122-126. 被引量:2

二级参考文献9

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部