期刊文献+

电渣重熔过程电磁场和温度场数值模拟 被引量:6

Numerical Simulation of Electromagnetic Field and Temperature Field of ESR
下载PDF
导出
摘要 建立了考虑电流集肤效应的三维电渣重熔电磁场和温度场数学模型,并采用电磁场和金属熔池形貌测量方法分别验证了数学模型的准确性,分析了电流频率和渣池厚度对电渣重熔过程电流密度、磁感应强度、电磁力、焦耳热、温度、熔池深度的影响规律.结果表明:随着电流频率增加,电极和钢锭表面电流集肤效应明显,渣池内部电流分布基本不变;电渣重熔系统内最大焦耳热位于平底电极与渣池接触角部,然而高温区位于渣池内部电极下方靠近渣金界面处.当渣池厚度从0.15 m增加到0.21 m,渣池中心轴线上最高温度从1 826℃降低到1 721℃,金属熔池深度从0.22 m降低到0.16 m. 3D finite element models for both the magnetic field and temperature field of electroslag remelting (ESR) system were developed and validated by the experimental measurements of magnetic flux density and melt pool profile. The effects of current frequency and slag cap thickness on the current density, magnetic flux density, electromagnetic force, joule heat, temperature field and melt pool depth were investigated, respectively. The results showed that with the increase of current frequency, the skin effect of current on the external surfaces of electrode and ingot is more significant, but the current frequency has no effect on the current density distribution in slag cap. The maximum joule heat zone is located on the comer of contact position between flat head electrode and slag. However, the high temperature zone is located in the slag cap below the electrode head and near the slag/melt interface. With the increase of slag cap thickness from 0. 15 m to 0. 21 m, the highest temperature in the axis of slag cap decreases from 1 826 ℃ to 1 721℃, and the melt pool depth decreases linearly from 0. 22 m to 0. 16 m.
作者 王晓花 厉英
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第6期813-818,共6页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(51274057) 国家科技支撑计划项目(2011BAE13B03)
关键词 电渣重熔 电磁场 温度场 集肤效应 数值模拟 electroslag remelting (ESR) electromagnetic field temperature field skin effect numerical simulation
  • 相关文献

参考文献8

  • 1Weber V, Jardy A, Dussoubs B, et al. A comprehensive model of the electroslag remelting process:description and validation [ J]. Metallurgical and Materials Transactions B, 2009,40B (3) :271 -280.
  • 2Hernandez-Morales B, Mitchell A. Review of mathematical models of fluid flow, heat transfer, and mass transfer in electroslag remelting process [ J ]- Ironmaking and Steelmaking, 1999,26 ( 6 ) :423 - 438.
  • 3Dong Y W, Jiang Z H, Liu H, et al. Simulation of multi- electrode ESR process for manufacturing large ingot [ J ]. ISIJ ]nternational,2012,52(12) :2226 -2234.
  • 4Choudhary M, Szekely J. The modeling of pool profiles, temperature profiles and velocity fields in ESR systems [ J ]. Metallurgical Transaction B, 1980,11B ( 3 ) :439 - 452.
  • 5Li B K, Wang F, Tsukihashi F. Current, magnetic field and joule heating in electroslag remelting processes [ J ]. ISIJ ]nternational ,2012,52 (7) : 1289 - 1295.
  • 6. Dong Y W, Jiang Z H, Li Z B. Mathematical model for electroslag remelting process [ J ].Journal of Iron and Steel Research International,2007,14 ( 5 ) :7 - 12.
  • 7Mitchell A. Solidification in remelting process [ J ]. Materials Science and Engineering A ,2005,413/414 : 10 - 18.
  • 8王晓花,厉英.钢锭凝固过程温度场数值模拟[J].铸造,2013,62(5):410-414. 被引量:18

二级参考文献13

  • 1董洁,袁守谦,邓林涛,刘晓燕.锻造用钢锭凝固过程温度场数值模拟[J].铸造技术,2007,28(2):268-270. 被引量:20
  • 2Thomas B G, Samarasekera I V, Brimacombe J K. Mathematical model of the thermal processing of steel ingots: part I. heat flow model [J]. Metallurgical and Materials Transaction, 1987, 18B (1) : 119-30.
  • 3Radovic Z, Lalovie M. Numerical simulation of steel ingot solidific- ation process [J]. Journal of Materials Processing Technology, 2005, 160 (2) : 156-159.
  • 4Kagawa A, Okamoto T. Influence of alloying elements on temperat- ure and composition for peritectic reaction in plain carbon steels [J]. Materials Science and Technology, 1986, 2 (10) : 997-1008.
  • 5Ueshima Y, Mizoguchi S, Matsumiya T, et al. Analysis of solute distribution in dendrites of carbon steel with // transformation during solidification [J]. Metallurgical and Materials Transactions, 1986, 17B (4): 845-859.
  • 6Harste K, Suzuki T, Schwerdtfeger K. Thermomechanical properties of steel: viscoplasticity of / iron and Fe-C alloys [J]. Materials Science and Technology, 1992, 8 (1) : 23-33.
  • 7Meng Y, Thomas B G. Heat-transfer and solidification model of continuous slab casting: CON1D [J]. Metallurgical and Materials Transaction, 2003, 34B (5): 685-705.
  • 8Jimbo I, Cramb A W. The density of liquid iron-carbon alloys [J]. Metallurgical and Materials Transaction, 1993, 24B (1) : 5-10.
  • 9李文胜,沈丙振,周翔,沈厚发,柳百成.大型钢锭凝固过程三维数值模拟[J].大型铸锻件,2010(3):1-4. 被引量:10
  • 10罗森,朱苗勇,祭程,蔡兆镇.钢连铸过程的溶质微观偏析模型[J].钢铁,2010,45(6):31-36. 被引量:25

共引文献17

同被引文献36

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部