期刊文献+

基于RGB-D序列的人体动态建模方法 被引量:1

Method of Human Dynamic Modeling Based on RGB-D Sequences
下载PDF
导出
摘要 人体建模是计算机视觉研究领域的重要研究课题。人体建模被广泛应用于科研、动画、游戏、服装设计、工业等领域,具有非常广阔的应用前景。传统的建模方法可以在大体上还原人体的姿态,但细节上会有偏差。本文提出一种基于RGB-D序列的人体动态建模方法。人体在场景中自然活动,利用廉价的深度摄像设备Kinect可以获取人体的骨架信息和三维点云。利用获得的骨架信息将模板人体分段刚性地变形到目标位置,使用ICP算法将变形后的模型与Kinect获取的点云进行更精确的配准,使用TPS变形获得一个平滑的柔性形变人体。 Human modeling is an important research topic in the field of computer vision research. Human modeling has a very broad application prospects in the field of scientific research, animation, games, costume design, industry, etc. The traditional modeling methods can restore the body' s posture in general, but there will be deviations details. This paper presents a method based on RGB-D sequences. When human activities in the scene, we could capture the data of the human skeleton and three-di- mensional point cloud by cheap equipment Kinect. First, we transform the template human modeling to the target location by the skeleton data captured. Next, the ICP algorithm is adopted to make the model point cloud acquired by Kinect more accurate regis- tration. Finally, we obtain TPS to make the human modeling smooth deformation.
作者 刘洋
机构地区 北京工业大学
出处 《计算机与现代化》 2014年第6期61-65,70,共6页 Computer and Modernization
关键词 人体建模 深度摄像机 骨架 human modeling depth camera skeleton
  • 相关文献

参考文献19

  • 1Tong Jing, Zhang Ming-min, Xiang Xue-qin, et al. 3D body scanning with hairstyle using one time-of-flight camera [J]. Computer Animation and Virtual Worlds, 2011,22 (2-3) :203- 211.
  • 2Rosenhahn B, Sehmaltz C, Brnx T, et al. Markerless motion capture of man-machine interaction [C]// IEEE Conference on Computer Vision and Pattern Recognition. 2008:1-8.
  • 3Gerard Pons-Moll, Andreas Baak, Juergen Gall, et al. Out- door human motion capture using inverse kinematics and yon mises-fisher sampling [C]// Proceedings of the IEEE International Conference on Computer Vision. 2011 : 1243- 1250.
  • 4Balan A O, Sigal L, Black M J, et al. Detailed human shape and pose from images[C]// Proceedings of the IEEE Computer Society Conference on Computer Vision and Panern Recognition. 2007 : 1-8.
  • 5Dimitrios S Alexiadis, Dimitrios Zarpalas, Petros Daras. Real-time, full 5-D reconstruction of moving foreground ob- jects from multiple consumer depth cameras [J]. IEEE Transactions on Multimedia, 2015,15 (2) : 339-358.
  • 6Jang In Yeop, Cho Ji-Ho, Lee Kwan H. 3D human model- ing from a single depth image dealing with self-occlusion [J]. Multimedia Tools and Applications, 2012,58 ( 1 ) : 267 -288.
  • 7Tong J, Zhou J, Liu L, et al. Scanning 3D full human bodies using kinects [J]. Visualization and Computer Graphics, IEEE Transactions on, 2012,18(4) : 643-650.
  • 8Shotton J, Girshick R, Fitzgibbon A, et al. Efficient hu- man pose estimation from single depth images [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013,35(12) :2821-2840.
  • 9Shotton J, Sharp T, Kipman A, et al. Real-time human pose recognition in parts from single depth images [J]. Communications of the ACM, 2013,56( 1 ) : 116-124.
  • 10Javier G, Zeev Z. Range mapping using speckle decorrela- tion [P]. United States: 7433024, 2008-10-07.

同被引文献58

  • 1徐继红,张文斌.非接触式三维人体扫描技术的综述[J].扬州职业大学学报,2006,10(3):49-53. 被引量:22
  • 2陈逸帆.孙守迁,王鑫.人体几何形态的参数化建模技术研究[c]//人体断面数据获取与图像处理研讨会论文汇编.2005.
  • 3Kakadiaris I A, Metaxas D. Three-dimensional human body model acquisition from multiple views [J]. International Journal of Computer Vision, 1998,30(3) 391-218.
  • 4Wuhrer S, Xi P, Shu C. Human shape correspondence with auto- matically predicted landmarks [J]. Machine Vision and Applica- tions, 2012,23(4) : 821-830.
  • 5Kazhdan M, Bolitho M, Hoppe H. Poisson surface reconstruc- tion [C]//Proceedings of the Fourth Eurographics Symposium on Geometry Processing. 2006:7.
  • 6Yamauchi K,Sato Y. 3D human body measurement by multiple range images [C]//Pattern Recognition. 2006 : 833-836.
  • 713odymetrics[OL]. http.-//www, bodymetrics, corn/.
  • 8Styku[OL]. http://www, styku, com/business/benefits/.
  • 9Microsoft kinect[OL], http://www, xbox. com/kinect, 2010.
  • 10Maimone A, Fuehs H. Reducing interference between multiple structured light depth sensors using motion [C] ff Virtual Rea- lity Short Papers and Posters(VRW). 2012 : 51-54.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部