期刊文献+

二次交替容度的AVaR的表示定理(英文)

Representation theorem for AVaR under a submodular capacity
下载PDF
导出
摘要 从分位数函数的角度出发,首先定义了金融头寸在容度空间下的VaR和AVaR.然后综合运用Choquet积分的性质以及概率测度空间下AVaR的结果,建立了基于二次交替容度的AVaR的表示定理.进一步得到了基于二次交替容度的AVaR为一致性风险度量,推广了经典的结果. From the viewpoints of quantile functions, we gave the definition of AVaR of financial positions under a capacity. Then, using the classical results of AVaR under the probability measure, we established the representation theorem for AVaR under the submodular capacity. As a byproduct of this representation theorem, we proved that AVaR under a submodular capacity is a coherent risk measure, which generalized the classical results.
出处 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第3期23-29,共7页 Journal of East China Normal University(Natural Science)
基金 国家自然科学基金(11371362,11101422) 全国优秀博士学位论文作者专项基金(200919) 中央高校基本科研业务费专项基金(2010LKSX04)
关键词 AVaR 分位数函数 表示定理 二次交替容度 AVaR quantile function representation theorem submodular capacity
  • 相关文献

参考文献1

二级参考文献25

  • 1Artzner, P., Delbaen, F., Eber, J.M., Heath, D. Coherent measures of risk. Mathematical Finance, 4: 203-228 (1999).
  • 2Browne, S. Reaching goals by a deadline: digital options and continuous time active portfolio management. Adv. Appl. Prob., 31:551-577 (1999).
  • 3Cvitanic, J. Minimizing expected loss of hedging in incomplete and constrained markets. SIAM J. Cont. Opt., 38:1050-1066 (2001).
  • 4Cvitanic, J., Karatzas, I. On dynamic measures of risk. Finance Stoch., 3:451-482 (1999).
  • 5Cvitanic, J., Karatzas, I. Generalized Neymaa-Pearson lemma via convex duality. Bernoulli, 7:79-97 (2001).
  • 6Delbaen, F. Coherent risk measures on general probability spemes. In: Sandmann, K., S.chonbucher, P.J. (Eds.), Advances in Finance and Stochastics. Springer-Verlag, 2002, 1-37.
  • 7El Karoui, N., Quenez, M.C. Dynamic programming and pricing of contingent claims in an incomplete market. SIAM J. Cont. Opt., 33:29-66 (1995).
  • 8El Karoui, N., Peng, S., Quenez, M.C. Backward stochastic differential equations in finance. Math. Finance, 7:1-71 (1997).
  • 9Follmer, H., Kabanov, Yu. M. Optional decomposition theorem and Lag-range multipliers. Finance Stoch., 2:69-81 (1998).
  • 10Follmer, H., Leukert, P. Quantile hedging. Finance Stoch., 3:251-273 (1999).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部