期刊文献+

一种离散问题的新型鳗鱼算法

A New Eel Algorithm of Discrete Problem
下载PDF
导出
摘要 通过对鳗鱼生活行为的分析与研究,提出一种离散问题的新型鳗鱼群智能算法。描述鳗鱼洄游中的行为,提取鳗鱼浓度适应、邻近学习、性别突变3个重要行为,并建立模型进行数学描述。通过对鳗鱼3个重要行为的合理组织,引入等级划分制度与标识度的思想,给出应用于组合优化问题的离散型鳗鱼算法,特别是对于离散个体间的邻近学习,采用切割片段法,使种群个体间的信息可以相互传递。通过TSP问题公共测试库TSPLIB中的数据对算法进行测试,结果表明,该算法具有较强的寻优能力。 Through analyzing and extracting the eel life behavior, this paper presents a new eels swarm intelligence algorithm for discrete problem. It describes the behavior of migratory eels, extracting three important behaviors which are concentration adaption, neighboring learning and sex mutation, and establishing a model for the mathematical description of the three important behaviors. Based on rational organization of the three important behaviors of eel and introduced of classification system and the thought of identification degrees, the discrete eel algorithm is proposed to combinatorial optimization problems. Especially for neighboring learning among discrete individuals, the paper uses a new method of cutting fragments, so that the information can be passed between individuals of the population to each other, Through the TSPLIB public test library of TSP problem to test the algorithm, results show that the algorithm has strong optimization capability.
出处 《计算机工程》 CAS CSCD 2014年第6期134-137,141,共5页 Computer Engineering
基金 国家自然科学基金资助项目(61303028)
关键词 等级划分 切割片段法 TSP问题 优化问题 离散算法 群智能算法 degree division cutting fragment method TSP problem optimization problems discrete algorithm swarm intelligence algorithm
  • 相关文献

参考文献15

  • 1Holland J H. Outline for a Logical Theory of Adaptive Systems[J]. Journal of the Association for Computing Machinery, 1962, 9(3): 297-314.
  • 2Dorigo M, Stutzle T. Ant Colony Optimization[M]. Cambridge, USA: MIT Press, 2004.
  • 3Hendlass T. Preserving Diversity in Particle Swarm Optimiz- ation[M]. [S. l.]: Springer-Verlag, 2003: 31-39.
  • 4李晓磊,邵之江,钱积新.一种基于动物自治体的寻优模式:鱼群算法[J].系统工程理论与实践,2002,22(11):32-38. 被引量:885
  • 5Yang Xinshe. Nature-inspired Metaheuristic Algorithms[M]. [S. l.]: Luniver Press, 2008.
  • 6Yang Xinshe, Deb S. Cuckoo Search Via Levy Flights[C]// Proc. of World Congress on Nature & Biologically Inspired Computing. [S. l.]: IEEE Press, 2009: 210-214.
  • 7Karaboga D. An Idea Based on Honey Bee Swarm for Numerical Optimization[R]. Alan, Turkey: Erciyes University, Tech. Rep.: 2TR06, 2005.
  • 8LIU Changan YAN Xiaohu LIU Chunyang WU Hua.The Wolf Colony Algorithm and Its Application[J].Chinese Journal of Electronics,2011,20(2):212-216. 被引量:35
  • 9Passino K M. Biomimicry of Bacterial Foraging for Distri- buted Optimization and Control[J]. IEEE Control Systems Magazine, 2002, 22(3): 52-67.
  • 10Simon D. Biogeography-based Optimization[J]. IEEE Trans- actions on Evolutionary Computation, 2008, 12(6): 702-713.

二级参考文献1

  • 1戴汝为 周登勇.智能控制与适应性.第三届全球智能控制与自动化大会(WCICA'2000)[M].合肥:-,2000.11-17.

共引文献914

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部