摘要
为提高小生境遗传算法的全局以及局部搜索能力,提出一种多交叉混沌选择反向小生境遗传算法。利用分段线性混沌映射函数生成一组混沌数序列,在每次进行交叉操作前,依据序列中对应元素的数值大小选择不同的交叉算子进行操作,通过小生境遗传算法产生较优的子代种群。针对子代种群,应用反向搜索策略获得反向种群,在子代种群和反向种群中进行精英选择得到最终新种群,以进一步加强算法的局部寻优能力。仿真实验结果表明,该算法在最优解及均值方面好于小生境遗传算法,从而证明其可行性和优越性。
An opposition niche genetic algorithm of multi-crossover chaotic selection is proposed to enhance global and local searching ability of the niche genetic algorithm. Piecewise linear chaotic map is brought to generate a chaotic sequence. Each element of this sequence is picked up before every crossover operation and corresponding crossover operator is chose according to the range of the element. Through the rest operation of niche genetic algorithm, excellent offspring population is obtained. Finally, opposition searching strategy is adopted to produce opposition offspring population. The ultimate offspring population choose better individuals from two populations to improve the local searching. Experimental results show the proposed algorithm is better than the other niche genetic algorithms in best solution and mean value. It shows that the algorithm is feasible and effective.
出处
《计算机工程》
CAS
CSCD
2014年第6期154-156,共3页
Computer Engineering
基金
国家自然科学基金资助项目(60902054)
中国博士后科学基金资助项目(20090460114
201003758)
关键词
小生境遗传
多交叉
分段线性混沌映射
反向搜索
优化
精英选择
niche genetic
multi-crossover
piecewise linear chaotic map
opposition searching
optimization
elitist selection