期刊文献+

自适应BP神经网络在光伏MPPT中的应用 被引量:3

Self-adaption BP neural network application in photovoltaic maximum-power-point tracking
下载PDF
导出
摘要 首先介绍了光伏电池的特性,并在比较了扰动观察法、电导增量法、恒定电压法、开路电压法等几种光伏系统最大功率跟踪(MPPT)算法的基础上,提出了一种基于BP神经网络的最大功率跟踪的控制策略。该策略将温度和光强作为输入变量,通过神经网络识别后可得到最大功率点。仿真结果表明,该方法能够快速、准确地跟踪光伏电池的最大功率点,具有良好的控制精度和适应性,显著提高了光伏系统的转换效率。 The characteristics of photovoltaic cells were described. A control scheme based on BP neural network was proposed for MPPT through comparing several MPPT methods, including perturbation and observation method (P&O), incremental conductance method, constant voltage method, open circuit voltage and so on. Taking temperature and light intensity as the input variables in this strategy, after identification of the neural network, the maximum power point could be obtained. Simulation results show that this method can quickly and accurately track the maximum power point of photovoltaic cells with good control accuracy and adaptability, significantly improving the conversion efficiency of photovottaic system.
出处 《电源技术》 CAS CSCD 北大核心 2014年第6期1090-1091,1113,共3页 Chinese Journal of Power Sources
基金 2013年张家口市科技局自筹经费项目(1321007B)
关键词 光伏发电系统 最大功率跟踪(MPPT) BP神经网络 photovoltaic power system maximum power point tracking (MPPT) BP neural network
  • 相关文献

参考文献2

二级参考文献13

  • 1张超,何湘宁.非对称模糊PID控制在光伏发电MPPT中的应用[J].电工技术学报,2005,20(10):72-75. 被引量:61
  • 2李炜,朱新坚.光伏系统最大功率点跟踪控制仿真模型[J].计算机仿真,2006,23(6):239-243. 被引量:86
  • 3崔岩,蔡炳煌,李大勇,胡宏勋,董静微.太阳能光伏系统MPPT控制算法的对比研究[J].太阳能学报,2006,27(6):535-539. 被引量:177
  • 4Funabashi,T.,Koyanagi,K.,Yokoyama,R.A review of islanding detection methods for distributed resources. Power Technology Conference Proceedings . 2003
  • 5Yang Chen,Keyue Ma Smedley.A Cost-Effective Single-Stage Inverter With Maximum Power Point Tracking. IEEE Transactions on Power Electronics Sept . 2004
  • 6Bahgat A B G,Helwa N H,Ahmad G E. Maximum power point traking controller for PV systems using neural networks[J].Renewable Energy,2005,(08):1257-1268.
  • 7Ben Salah C,Ouali M. Comparison of fuzzy logic and neural network in maximum power point tracker for PV systems[J].Electric Power Systems Research,2011,(01):43-50.
  • 8Chaouachi A,Kamel R M,Nagasaka K. A novel multimodel neuro-fuzzy-based MPPT for three-phase grid-connected photovoltaic system[J].Journal of Solar Energy Engineering,2010,(12):2219-2229.
  • 9Chen Wei,Shen Hui,Shu Bifen. Evaluation of performance of MPPT devices in PV systems with storage batteries[J].Renewable Energy,2007,(09):1611-1622.
  • 10Hiyama T,Kouzuma S,Imakubo T. Identification of optimal operating point of PV modules using neural network for real time maximum power tracking control[J].IEEE Transactions on Energy Conversion,1995,(02):360-367.

共引文献48

同被引文献23

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部