摘要
根据植被的主要组成和结构将药乡林场森林划分为松林、栎林、刺槐林、混交林、板栗林和草地共六种植被类型。通过分类型设置典型样地并结合生物量法测算了药乡林场的森林碳储量。结果表明:药乡林场总碳储量为2.4359×108 kg,不同空间层次碳储量由高到低依次为:土壤层(1.6743×108 kg)、乔木层(7.5902×107 kg)、枯落物层(1.2963×105 kg)、草本层(7.8540×104 kg)、灌木层(4.5670×104 kg);其中,森林碳储量主要集中在土壤层(68.74%)和乔木层(31.16%),二者几乎占据了总碳储量的99.90%。不同植被类型碳密度依次表现为:刺槐(2.6325×105 kg·hm-2)栎林(2.4780×105 kg·hm-2)·混交林(2.4282×105 kg·hm-2)·松林(1.9240×105 kg·hm-2)·板栗(7.3900×104 kg·hm-2)·草地(3.8490×104 kg·hm-2)。另外,药乡林场森林的总碳密度为2.1687×105 kg·hm-2,接近我国森林生态系统平均碳密度(2.5883×105 kg·hm-2)。
In this study, we divided the vegetation types of Yaoxiang forest farm into six types in the light of the composition and structure of the main vegetation, including pine forest, oak forest, black locust forest, mixed forest, Chinese chestnut forest and grass, etc. By setting up typical sample plots of different types and combining with the biomass method, we measure and calculate the forestry carbon storage of Yaoxiang forest farm. The results are as follows: The total carbon storage of Yaoxiang forest farm is 2.4359×10^8kg, being ranked in the order of soil layer(1.6743×10^8kg), tree layer (7.5902×107 kg),litter layer (1.2963×10^5kg),herb layer (7.8540×10^4kg), shrub layer (4.5670×10^4kg);Among them, the forest carbon storage are mainly concentrated on the soil layer (68.74%) and the tree layer (31.16%), which accounted for almost 99.9%of total carbon storage. Carbon density of different vegetation types are followed the order of black locust forest (2.6325×10^5kg·hm-2)·oak forest (2.4780×10^5kg·hm-2)·mixed forest (2.4282×10^5kg·hm-2)·pine forest (1.9240×10^5kg·hm-2)·Chinese chestnut forest (7.3900×10^4kg ·hm-2)·grass(3.8490×10^4kg·hm-2). In addition, the total carbon density of Yaoxiang forest farm is 2.1687×10^5kg·hm-2, which lower than the average carbon density of forest ecosystem of China (2.5883×10^5kg·hm-2).
出处
《山东农业大学学报(自然科学版)》
CSCD
北大核心
2014年第2期181-186,共6页
Journal of Shandong Agricultural University:Natural Science Edition
基金
中国科学院战略性先导科技专项(XDA05050203-02)
关键词
碳储量
碳密度
异速生长方程
空间分布
Carbon storage
carbon density
allometric growth equations
spatial distribution pattern