期刊文献+

基于改进遗传算法的智能体路径规划仿真 被引量:17

Path Planning for Agent Based on Improved Genetic Algorithm
下载PDF
导出
摘要 将改进自适应遗传算法应用于自治智能体动态路径规划,选取一维路径编码,并利用领域知识和局部避障技术生成初始种群,设计了交叉、变异和平滑算子,提出了新的交叉概率和变异概率调节公式。上述调节公式不仅考虑了种群中个体适应度的区别,而且还从整体上考虑了种群多样性和收敛性等性能指标,克服了传统遗传算法和一般自适应遗传算法的早熟收敛问题,提高了进化效率。仿真结果表明,改进方法在收敛速度和输出全局最优解的概率相对于标准遗传算法和一般自适应遗传算法都有较明显的提高。 The paper applied an improved an adaptive genetic algorithm for autonomous agent dynamic path planning. We selected one -dimensional path encoding, used domain knowledge and local obstacle avoidance technology to generate initial population, designed crossover, mutation and smooth operator, and put forward a new crossover probability and mutation probability adjustment formula. The adjustment formula considerd not only the difference of individual fitness value, but also the population diversity and convergence of indicators as a whole, which overcame the premature convergence problem in standard genetic algorithm and adaptive genetic algorithm and improved the evolutionary efficiency. The simulation experimental results show that the method in convergence speed and the probability of global optimal solution compared with standard genetic algorithm and adaptive genetic algorithm have been obviously improved.
出处 《计算机仿真》 CSCD 北大核心 2014年第6期357-361,共5页 Computer Simulation
基金 国家青年科学基金项目"智能规划中子目标排序关系的评价机制与提取方法研究"(61300095)
关键词 自适应遗传算法 自治智能体 动态路径规划 交叉概率 变异概率 种群多样性 Adaptive genetic algorithm Autonomous agent Dynamic path planning Crossover probability Mutation probability Population diversity
  • 相关文献

参考文献12

  • 1M J Wooldridge, N R Jennings. Intelligent Agent: Theory and Practice[ J]. Knowledge Engineering Review, 1995,10 ( 2 ) : 115 - 152.
  • 2T Lozano - Perez. Spatial planning: A configuration approach [J]. IEEE Trans Comput, 1983, C32(2) : 108.
  • 3E Rimon, D E Doditschek. Exact robot navigation using artificial potential fields[ J]. IEEE Trans Rob A utom , 1992, 8 ( 5 ) : 501.
  • 4S X Yang, M Meng. An efficient neural network approach to dy- namic robot motion planning [ J]. Neural Networks, 2000, 13 (2) :143.
  • 5刘国栋,谢宏斌,李春光.动态环境中基于遗传算法的移动机器人路径规划的方法[J].机器人,2003,25(4):327-330. 被引量:48
  • 6唐国新,陈雄,袁杨.基于改进遗传算法的机器人路径规划[J].计算机工程与设计,2007,28(18):4446-4449. 被引量:31
  • 7Wang Hongjian, et al. An improved path planner based on adap- tive genetic algorithm for autonomous underwater vehicle [ C ]. Proceedings of the IEEE International Conference on Mechatronics and Automation, 2005 - 2:857 - 861.
  • 8N Noboru, T Hideo. Path planning of an agricultural mobile robot by neural network and genetic algorithm[ J]. Computers and Elec- tronics in Agriculture, 1997,18 : 187 - 204.
  • 9H Woonggie, B Seungmin, K Taeyong. Genetic Algorithm Based Path Planning and Dynamic Obstacle Avoidance of Mobile Robots [ C ]. In: IEEE International Conference on Computational Cyber- netics and Simulation, 1997 - 3:2747 - 2751.
  • 10Mat Buckland著,吴祖增,沙鹰译.游戏编程中的人工智能技术[M].北京:清华大学出版社,2006:110-111.

二级参考文献24

  • 1孙增圻等.智能控制理论与技术[M].北京:清华大学出版社,..
  • 2Goldberg D E.Genetic algorithm in search,optimization and machine learning [M].Reading M A,USA:Addison-Wesley Publishing Company,Inc,1989.
  • 3Srinivas M,Patnaik L M.Adaptive probabilities of crossover and mutation in genetic algorithms [J].IEEE Trans.on Syst.,Man and Cybern.,1994,24(4):656-667.
  • 4李敏强.遗传算法的基本理论与应用[M].北京:科学出版社,2003..
  • 5Borenstein J, Koren Y. The vector field histogram - fast obstacle avoidance for mobile robots[ J]. IEEE Journal of Robotics and Automation ,1991,7(3) : 278 -288.
  • 6Kehtaraavaz N, Grisworld, Lee J. Visual control for an autonomous vehicle(BART) -the vehicle following problem[J]. IEEE Transcation on Vehicular Technology. 1991,40(3) :654 -662.
  • 7Fujimori A, Nikiforuk P N, Gupta M M. Adaptive navigation of mobile robots with obstacle avoidance[ J]. IEEE Transcations On Robotics and Automation. 1997,13(4) :596 -601.
  • 8Fierro R, Lewis F L. Control of a nonholonomic mobile robot using neural networks[ J ]. IEEE Trascation on Neural Networks. 1998,9 (4) :589 -600.
  • 9Sarkar N, Yun X P, Kumar V. Control of mechanical systems with rolling constrains: application to dynamic control of mobile robots[ J]. Int J of Robotics Research, 1994,3( 1 ) :55 - 69.
  • 10王小平 曹立明.遗传算法-理论、应用与软件实现[M].西安:西安交通大学出版社,2003..

共引文献240

同被引文献233

引证文献17

二级引证文献293

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部