期刊文献+

海量遥感数据的GPU通用加速计算技术

General GPU-accelerated Computing Technology of Massive Remote Sensing Data
下载PDF
导出
摘要 通过研究GPU通用运算环境下栅格数据的空间域滤波及相关性算法,详细介绍了GPU通用运算技术;通过比较,分析了GPU通用加速计算的优势所在。 The spatial i ltering and correlation algorithms of raster data in the GPU general computing environment were investigated. The paper presented general GPU computing technology in detail and analyzed the advantages of GPU accelerated computing by comparison with CPU computing.
出处 《地理空间信息》 2014年第3期23-26,5,共4页 Geospatial Information
关键词 图像处理 空间域滤波 相关曲面 GPU通用运算 CUDA image processing,spatial filtering,corresponding surface,GPU computing,CUDA
  • 相关文献

参考文献5

二级参考文献23

  • 1吴恩华.图形处理器用于通用计算的技术、现状及其挑战[J].软件学报,2004,15(10):1493-1504. 被引量:141
  • 2Luebke D, Harris M, KrUger J, Purcell T, Govindaraju N, Buck I, Woolley C, Lefohn A. GPGPU: General purpose computation on graphics hardware//Proceedings of the 2006 ACM/IEEE Conference on Supercomputing (SC ' 06). New York, 2006:33.
  • 3Hill Mark D, Marty Michael R. Amdahl's law in the mul- ticore era. Computer, 2008, 41(7): 33-38.
  • 4Kirk D. NVIDIA cuda software and GPU parallel computing arehitecture//Proceedings of the 6th International Symposi- um on Memory Management (ISMM'07). New York, 2007: 103-104.
  • 5Brock B, Rajamani K. Dynamic power management for em- bedded systems//Proceedings of the IEEE SOC Conference, Portland, Oregon, USA, 2003:416-419.
  • 6Choi Kihwan, Soma Ramakrishna, Pedram Massoud. Fine- grained dynamic voltage and frequency scaling for precise en- ergy and performance trade-off based on the ratio of off-chip access to on chip computation times. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2005, 24(1): 18-28.
  • 7Hong Sunpyo, Kim Hyesoon. An analytical model for a GPU architecture with memory-level and thread-level parallelism awareness//Proceedings of the 36th Annual International Symposium on Computer Architecture. Austin, TX, USA, 2009:152-163.
  • 8Mudge T. Power: A first class design constraint for future architectures. IEEE Computer, 2001, 34(4): 52-58.
  • 9Woo Dong Hyuk, Lee Hsien-Hsin S. Extending Amdahl's law for energy-efficient computing in the many core era. Computer, 2008, 41(12): 24-31.
  • 10Yang Canqun, Wang Feng, Du Yunfei, Chen Juan, Liu Jie, Yi Huizhan, Lu Kai. Adaptive optimization for petaseale her erogeneous CPU/GPU computing//Proeeedings of the IEEE International Conference on Cluster Computing. Heraklion, Greece, 2010; 19-28.

共引文献135

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部