期刊文献+

基于哈密顿体系的框剪结构动力时程分析 被引量:1

Dynamic Time History Analysis of Frame- Shear Wall Structures Using the Hamiltonian Dual System
下载PDF
导出
摘要 本文采用框剪结构的并联铁摩辛柯梁模型,从结构总势能出发,求得框剪结构非连续化假定下协同分析的哈密顿对偶体系,由两端边值问题精细积分法中的区段混合能矩阵推导出结构的层单元刚度矩阵,利用有限元刚度集成法形成总刚矩阵;然后采用初值问题的精细积分法对框剪结构进行动力时程分析,并采用Matlab编制相应的程序。以某10层框剪结构为例,验证了本文方法的可靠性与可行性,本方法也适用于其它高层建筑结构如框架、剪力墙、筒中筒等结构。 Parallel shear - bending beam model of frame -shear wall structures is used for the dynamic time history analysis. According to the total potential energy of structure, the Hamiltonian dual system of coordination analysis under the discontinuous assumption is established for frame - shear wall structure. The layer element stiffness matrix is introduced according to interval mixed energy matrix which is based on the precise integration method of the double end boundary value problems, and the global stiffness matrix of structure can be established according to the finite element stiffness integration method. Eventually, the dynamic time history analysis is processed on the frame - shear wall structures based on the precise integration method of initial value problems, and the relevant program is compiled. The reliability and feasibility of this method is testified through a 10 - floor frame - shear building. Moreover, the method can be applied conveniently to other high buildings,such as frame structures, shear wall structures, tube - in - tube structures and so on.
作者 王颖 胡启平
出处 《四川建材》 2014年第3期46-49,共4页 Sichuan Building Materials
基金 河北省自然科学基金资助项目(E2006000630) 河北省教育厅自然科学基金资助项目(2002147)
关键词 框剪结构 动力时程分析 精细积分法 哈密顿对偶体系 frame - shear wall structure dynamic time history analysis precise integration method Hamiltonian dual system
  • 相关文献

参考文献9

二级参考文献39

  • 1胡启平,孙良鑫,高洪俊.铁摩辛柯梁弯曲问题的精细积分法[J].工业建筑,2007,37(z1):268-270. 被引量:18
  • 2钟万勰,林家浩.陀螺系统与反对称矩阵辛本征解的计算[J].计算结构力学及其应用,1993,10(3):237-253. 被引量:13
  • 3胡启平,张华.框架-剪力墙-薄壁筒斜交结构分析的状态空间法[J].工程力学,2006,23(4):125-129. 被引量:11
  • 4胡启平,李张苗,侯瑞珀.铁摩辛柯梁弯曲问题的对偶求解体系[J].河北建筑科技学院学报,2006,23(3):1-2. 被引量:22
  • 5JGJ3-2002,高层建筑混凝土结构设计规范[S].
  • 6[1]N M Newmark. A method of computation for structural dynamics [J]. Journal of Engineering Mechanics, 1959, 85(3): 249-260.
  • 7[2]E L Wilson, et al. Nonlinear dynamic analysis of complex structures [J]. Earthquake Engineering and Structural Dynamics, 1973, 1(3): 241-252.
  • 8[3]B W Golley. A time-stepping procedure for structural dynamics using Gauss point collocation [J]. International Journal for Numerical Methods in Engineering, 1996, 39(23): 3985-3998.
  • 9[4]J Kajawski, R H Gallagher. A generalized least-squares family of algorithms for transient dynamic analysis [J]. Earthquake Engineering and Structural Dynamics, 1989, 18(4): 539-550.
  • 10[5]N Turnow, J C Simo. How to render second order accurate time stepping algorithms fourth order accurate while retaining the stability and conservation properties [J]. Computer Methods in Applied Mechanics and Engineering, 1994, 115(3): 233-252.

共引文献585

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部