期刊文献+

基于自适应压缩感知的信道估计算法

Channel Estimation Based on Adaptive Compressive Sensing
下载PDF
导出
摘要 传统方法压缩感知算法截取训练序列最后未被数据干扰固定部分作为观测矩阵,该方法为了抵抗最差的信道而浪费了大量的可用观测数据。在此基础上提出了一种自适应压缩感知的信道估计算法,首先对训练序列进行自适应检测,得到整个未受干扰的观测矩阵,再用压缩感知算法计算信道估计。仿真结果表明,这种基于自适应压缩感知的信道估计算法大幅提高了信道估计的准确性。 A lot of compressive sensing methods are applied in channel estimation for better performance.The accuracy of compres- sive sensing method is closely related to the observation matrix.The traditional method takes the fixed final part of the training sequence not interfered by the former valid data as observation matrix.In order to resist the worst channel, the traditional method will waste a lot of available observation sequence in practical scenarios.An adaptive compressive sensing-based channel estimation is proposed in this paper: the entire un-interfered training sequence is detected dynamically to obtain the whole un-interfered observation matrix and the compressive sensing method is used to calculate the channel estimation. The simulation results show that the proposed method can effectively improve the accuracy of channel estimation.
作者 陈仿杰
出处 《无线电通信技术》 2014年第3期39-41,共3页 Radio Communications Technology
关键词 自适应 压缩感知 信道估计 观测矩阵 adaptive compressive sensing channel estimation observation matrix
  • 相关文献

参考文献11

  • 1SONG J, YANG Z, YANG L.Technical Review on Chi- nese Digital Terrestrial Television Broadcasting Standard and Measurements on Some Working Modes [ J ]. IEEE Trans.Broadcast, 2007, 53( 1):1-7.
  • 2ZHANG W, GUAN Y, LIANG W.An Introduction of the Chinese DITB Standard and Analysis of the PN595 Working Modes[J].IEEE Trans.Broadcast, 2O07, 53(1):8-13.
  • 3Recommendation ITU-R BT. 1306 - 6, Error-correction, Data Framing, Modulation and Emission Methods for Dig- ital Terrestrial Television Broadcasting[ S].
  • 4WEI D, MILENKOVIC O.Subspace Pursuit for Compres- sive Sensing Signal Reconstruction [ J ]. IEEE Trans. Inf. Theory, 2009,55 ( 5 ) : 2230-2249.
  • 5CANDES E, WAKIN M. An Introduction to Compressive Sampling[ J] .IEEE Signal Process,2008,25 (2) : 21-30.
  • 6WANG Z, DAI L, WANG J. Priori Information Aided Compressive Sensing for Time Domain Synchronous OFDM [J].Electronics Letters, 2012, 48(13): 800-801.
  • 7DONOHO D, TSAIG Y, DRORI I., et al. Sparse Solu- tion of Underdetermined Systems of Linear Equations by Stagewise Orthogonal Matching Pursuit [ J ]. IEEE Trans. Inf.Theory, 2012,58(2) : 1094-1121.
  • 8DAI L, WANG Z, YANG Z.Compressive Sensing Based Time Domain Synchronous OFDM Transmission for Vehic- ular Communications [ J ]. IEEE J. Sel Areas Commun., 2013,31 (9) :460-469.
  • 9NEEDELL D, TROPP J.Cosamp: Iterative Signal Recov- ery from Incomplete and Inaccurate Samples [ J ]. Commun. ACM,2010, 53(12) : 93-100.
  • 10GIRYES R, Elad M. RIP-based Near-oracle Performance Guarantees for SP, CoSaMP, and IHT [ J ]. IEEE Signal Process, 2012, 60(3) : 1465-1468.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部