期刊文献+

一类自仿测度下的正交指数函数的个数

The Cardinality of Orthogonal Exponential Functions Under a Class of Self-affine Measures
下载PDF
导出
摘要 分形测度的谱或非谱问题是调和分析中最活跃的研究领域之一,某些分形Hilbert空间中存在无穷多个指数函数系,使得构成一个标准正交基.这个时候该测度称为谱测度.为此,讨论了一类Bernoulli卷积测度下的正交指数函数的个数. The spectrality or non-spectrality of fractal measures is one of the active research area of the Harmonic analysis. Some of the fractal Hilbert spaces admit infinitely many orthogonal exponential function systems such that composite an orthonormal basis.At this time we call this measure is a spectral measure. In this paper we discuss the cardinality of orthogonal exponential functions under a class of Bernoulli convolution measures.
出处 《喀什师范学院学报》 2014年第3期3-5,共3页 Journal of Kashgar Teachers College
基金 喀什师范学院校内青年课题基金(132484)
关键词 迭代函数系(IFS) Bernoulli卷积测度 指数函数 正交性 Iterated function systems Bernoulli convolution measures Exponential functions Orthogonality
  • 相关文献

参考文献5

  • 1P E T Jorgensen,S Pedersen.Dense analytic subspoees in frantal-spaees[J].J Anal Math, 1998,75: 185-228.
  • 2Dutkay D E,Han D,Jorgensen P E T. Orthogonal exponentials, translations and Bohr competions[J]. Funet Anal,2009,257 (9):2999-3019.
  • 3John E Hutchinson. Fraetals and Self Similarity[J].Indiana Univ Math J, 1981,30(5): 713-747.
  • 4Palle E T Jorgensen,Keri Komelson,Karen Shuman. Orth- ogonal exponentials for Bernoulli iterated function systems. Representations, Wavelets and Frames: A Celebration of the Mathematical Work of Lawrence W. Baggett,Birkhauser, Boston: Appl Num Harm Anal, 2008: 217-237.
  • 5Xin-rong Dai. When does a Bernoulli convolution admit a spectrum? [J]. Adv Math,2012,231 : 1681-1693.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部