期刊文献+

基于数据挖掘和小波神经网络的航材消耗预测方法 被引量:4

Prediction Method of Air Material Consumption Based on Data Mining and WNN
下载PDF
导出
摘要 运用数据挖掘技术对航材消耗的历史数据进行关联分析,筛选出对保障飞机飞行有重要作用的航材消耗数据,大大缩减了需要预测的航材数量,同时对消耗航材之间的内在影响关系进行量化。在分析人工鱼群算法原理的基础上,对算法中步长参数和视野范围参数的设置方法进行了改进。实例结果表明,运用小波神经网络预测航材消耗的方法大大降低了预测误差,说明了该方法的有效性、可行性和实用性。 In this paper, the correlation analysis on historical data of air material consumption was presented by using data mining technology, tilting out the important material consumption data on the protection of aircraft flight, greatly reducing the amount of air material needed to forecast, and the influence between consumption materials relationship was quantified. The principle of artificial fish swarm algorithm was analyzed, and the setting method of step parameter and visual field parameter was improved on the basis of it. The example results showed that the method of wavelet neural network could greatly reduce the prediction error of air material consumption, illustrated the effectiveness, feasibility and practicality of the method.
出处 《海军航空工程学院学报》 2014年第3期235-238,256,共5页 Journal of Naval Aeronautical and Astronautical University
基金 国家部委技术基础基金资助项目(1036221)
关键词 数据挖掘 小波神经网络 消耗预测 data mining wavelet neural network consumption forecast
  • 相关文献

参考文献11

  • 1张作刚.海军航材库存管理[M].北京:海潮出版社,2008:1-1:13-14.
  • 2刘臣宁.航材供应[M].北京:国防工业出版社,2009:56-58.
  • 3徐廷学,芮国胜,郑伟.航空装备综合保障[M].北京:兵器工业出版社,2004:12.14.
  • 4杨新广,陈云翔,费文.航空装备战斗损伤概率预测模型研究[J].数学的实践与认识,2011,41(18):118-122. 被引量:4
  • 5计希禹.数据挖掘技术应埔实例[M].北京:机械工业出版社,2009:23-26.
  • 6邵峰品,于忠清.数据挖掘原理与箅法[M].北京:中国水利水电出版社,2003:12-16.
  • 7薛青,罗佳,郑长伟,刘永红.面向作战仿真的数据挖掘[J].四川兵工学报,2013,34(8):93-95. 被引量:11
  • 8CHENG G, LIU X, WU J X. Interactive knowledge dis- covery through self-organising feature maps[C]//World Congress on Neural Networks. 2004: 430-434.
  • 9ESTER M, KRIGEL H P, XU X. Knowledge discovery in large spatial databases, advances in knowledge discov- ery and data mining[M]. MA : AAAI/MIT Press, 2006 : 83- 115.
  • 10HSU K, GUPTA H V, SOROOSHIAN S. Artificial neural network modeling of the rainfall runoff process[J]. Water Resources Research, 2005,31 (10) : 2517-2530.

二级参考文献12

共引文献21

同被引文献83

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部