期刊文献+

若干图的伴随分解及色等价性

Adjoint factorizations of some graphs and chromatically equivalence of their complements
下载PDF
导出
摘要 设Pm和Cm分别表示具有m个顶点的路和圈,G是任意的r阶连通图,设m是正奇数,把路Pm的标号为奇数的2-1(m+1)个顶点分别与2-1(m+1)G每个分支的第i个顶点Vi重迭后所得到的图记为ρG(i)m+2-1(m+1)r。运用图的伴随多项式的性质,首先给出了一类图簇ρG(i)(2 m+2)+((m+1)r的伴随多项式。进而令m=2t-1 q-1,λn=(2nq-1)+2n-1 qr,在讨论上述图的伴随多项式的基础上,我们证明了图ρG(i)λt和ρG(i)λt∪(t-1)K1的伴随多项式的因式分解定理,进而证明了这些图类的补图的色等价性。 It used the symbol Pm to denote a path with n vertices and Cm to denote a cycle with n vertices. In addition,G was a connectiwe graph with r vertices and let be an odd number, then these were denoted by ρ(m+2)^GG -1 (m+1).The graph consisting of Pm and 2^- 1 (m+1)G by coinciding m vertices were marked "odd " with the vertex Vi of every component of Pm and 2^- 1 (m+1)G,respectively. By applying the properties of adjoint polynomials,we gave the adjoint polynomials of a kind of graphs ρ (2m+2)^GG+((m+1))r,Let m=2^(t-1) q-1 and λn=(2^n q-1) +2^(n-1) qr,which was based on the several adjoint polynomials of graphs discussed above. It also proved the factorizations Theorem of adjoint polynomials of graphs ρλt^GG and ρλt^GG ∪(t-1)K1,Furthermore,the chromatically equivalenl graphs of their complements were therefore verified.
出处 《南昌大学学报(理科版)》 CAS 北大核心 2014年第2期107-111,共5页 Journal of Nanchang University(Natural Science)
基金 国家自然科学基金项目(10671008)
关键词 色多项式 伴随多项式 因式分解 色等价性 Chromatic polynomial Adjoint polynomials Factorization Chromatically equivalence
  • 相关文献

参考文献15

  • 1BODY J A,MURTY U S R. Graph Theory with Ap- plications[M]. Amsterdam: North-Holland, 1976.
  • 2BOLLOBAS B. Modern Graph Theory[J]. New York: Spinger-Verlag, 1998.
  • 3CHAO C Y,WHITEHEAD E G. On Chromatic Equiv- alence of Graph[J]. Springer Lecture Note in Mathe- matics,Vol. 642 (Springer,Berlin, 1978: 121-131.
  • 4KOH K M, TEO K L. The Search for Chromatically Unique Graphs[J]. Graph Combin, 1990,6 : 259-285.
  • 5刘儒英:求图的色多项式的一种新方法及应用[J].科学通报,1987,32,77.
  • 6LIU R Y. Adjoint Polynomials and Chromatically Unique Graphs[J]. Discrete Mathematics, 1997,172:85-92.
  • 7张秉儒.几类图簇的伴随多项式的因式分解及色性分析[J].数学学报(中文版),2002,45(3):529-534. 被引量:30
  • 8马海成.构造色等价图的几种新方法[J].高校应用数学学报(A辑),2004,19(2):135-140. 被引量:19
  • 9BIGGS N. Algebraic Graph Theory[M]. Cambridge: Cambridge University press, 1974.
  • 10READ R C. An Introduction to Chromatic Polynomials [J]. Combin Theory, 1968,4 : 52-71.

二级参考文献21

  • 1张秉儒.P_n(n≥2)是不可约路的判定方法[J].数学物理学报(A辑),1997,17(S1):114-119. 被引量:4
  • 2刘儒英,系统科学与数学,1992年,12卷,207页
  • 3刘儒英,理论计算机科学(丛刊),1991年,1期,112页
  • 4刘儒英,青海师范大学学报,1990年,3期,1页
  • 5刘儒英,科学通报,1987年,32卷,236页
  • 6刘儒英,科学通报,1987年,32卷,77页
  • 7Bondy J. A., Murty U. S. R., Graph Theory with Applications, Amsterdam: North-Holland, 1976.
  • 8Joe L. Mott, Abraham Kandel, Theodorep Baker Discrete Mathematics for Computer Scientists, Reston,Virginia, 1983.
  • 9Liu Ruying, Adjoint polynomials and chromatically unique Graphs, Discrete Mathematic, 1997, 172: 85-92.
  • 10Zhang Bingru, The method of determining Irreducible paths Pn (n≥2), J. Acta Math. Scientia, 1997,17(Special issue): 114-119.

共引文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部