期刊文献+

基于主分量分析的变分贝叶斯独立分量分析的盲源分离方法

Blind source separation method based on Principal Component Analysis and variational Bayesian independent component analysis
下载PDF
导出
摘要 针对传统基于随机初始化的变分贝叶斯独立分量分析(VBICA)方法的不足,即随机初始化导致经过不同的学习得到的分离结果存在差异性,提出了一种基于主分量分析(PCA)的变分贝叶斯独立分量分析的盲源分离方法,在提出的方法中,利用PCA来初始化模型参数。并与传统的变分贝叶斯独立分量分析方法进行对比。仿真结果验证了该方法的有效性,提出的方法不仅比传统的VBICA方法取得了更好的分离性能,并且保持分离结果的稳定性,克服了传统的VBICA方法的不足。 For the deficiencies of the traditional variational Bayesian independent component analysis (VBI- CA),i. e. the differences resulting from the random initialization in the separation results from different learnings. A blind source separation method based on principal component analysis (PCA) and VBICA was proposed,where PCA was used to initialize the model parameters. The proposed method was compared with the traditional VBICA method. The simulation results verified the effectiveness of this method,which was superior to the traditional VBICA in the separation performance and the stability of the separation resuits. It also overcame the deficiencies of the traditional VBICA.
出处 《南昌大学学报(理科版)》 CAS 北大核心 2014年第2期187-191,共5页 Journal of Nanchang University(Natural Science)
基金 国家自然科学基金(51075372 50775208) 江西省教育厅科技计划项目(No.GJJ12405)
关键词 变分贝叶斯独立分量分析 盲源分离 主分量分析 Variational Bayesian Independent Component Analysis Blind Source Separation Principal Component Analysis
  • 相关文献

参考文献8

二级参考文献28

  • 1李志农,郝伟,韩捷,何永勇,褚福磊.噪声环境下机械故障源的盲分离[J].农业机械学报,2006,37(11):110-113. 被引量:22
  • 2许雯,董林,田家斌.一种改进的高斯混合模型算法[J].信息工程大学学报,2005,6(2):65-67. 被引量:7
  • 3李熠,何永勇,李志农,褚福磊.盲源分离和小波消噪在碰摩声频信号分析中的应用研究[J].机械强度,2005,27(6):719-724. 被引量:9
  • 4Tian X H,Lin J,Fyfe K R,et al.Gearbox fault diagnosis using independent component analysis in the frequency domain and wavelet filtering[C].Proceedings of 2003 IEEE International Conference on Acoustics,Speech,and Signal Processing,2003,2(6-10):245-248.
  • 5Rivet B,Vigneron V,Paraschiv-Ionescu A,et al.Wavelet de-noising for blind source separation in noisy mixtures[J].Lecture notes in computer science,2004,3195:263-270.
  • 6Paraschiv-Ionescu A,Jutten C,Aminian K,et al.Wavelet denoising for highly noisy source separation[J].2002 IEEE International Symposium on Circuits and Systems (ISCAS 2002),201-204(26-29):2002.
  • 7Choudrey R A,Roberts S J.Flexible Bayesian independent component analysis for blind source separation[C].Proceedings of ICA-2001,San Diego,USA,2001.
  • 8Choudrey R A.Variational methods for Bayesian independent component analysis[D].University of Oxford,2002.
  • 9Miskin J W.Ensemble learning for independent component analysis[D].UK:University of Cambridge,2000.
  • 10Jordan M I,Ghahramani Z,Jaakkola T S.An introduction to variational methods in graphical models[J],MachineLearning,1999,37(2):183-233.

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部