期刊文献+

四元数方程AXA^H=B厄米特解中的复矩阵极秩 被引量:3

The Extremal Ranks of Complex Matrices in Hermitian Solutions of Quaternion Equation AXA^H=B
下载PDF
导出
摘要 通过四元数矩阵的复表示X=X0+X1j和矩阵秩的许多性质,确定出四元数矩阵方程AXAH=B厄米特解集{X}的复表示矩阵集{X0}和{X1}的最大秩、最小秩公式.作为这些极秩公式的应用,探讨了四元数厄米特矩阵广义逆的一些性质,得出任意一个四元数厄米特矩阵M的广义逆中存在纯复矩阵、广义逆全部为纯复矩阵、广义逆中存在纯非复矩阵、广义逆全部为纯非复矩阵这4种情形的充要条件. By using the complex representation of quaternion matrix X=X0 +X1j and several properties regarding ranks of matrices,we establish formulas of the maximal and minimal ranks of complex matrices {X0 } and {X1 },where X0 and X1 are the complex representation matrices of the Hermitian solutions {X}of the quaternion matrix equation AXA^H=B. As an application,we consider properties of the generalized inverse of a Hermitian quaternion matrix M,and give necessary and sufficient conditions for these special cases: (i) There is at least a complex matrix N0 ∈ {M^-}. (ii) All the matrices of {M^-} are complex. (iii) There is at least a pure non complex matrix with the form N1j∈{M^-}. (iv) All the matrices of {M^-} are pure non complex with the form N1j.
作者 连德忠 袁飞
出处 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第3期305-309,共5页 Journal of Xiamen University:Natural Science
基金 国家自然科学基金(10271099)
关键词 四元数 矩阵方程 复表示 厄米特解 极秩 quaternion matrix equations complex representation Hermitian solution extremal ranks
  • 相关文献

参考文献12

  • 1Hungerford T W. Algebra[M]. New York, USA: Spring- Verlag, 1980.
  • 2Zhang F. Quaternions and matrices of quaternions[J].Linear Algebra Appl, 1997,251 : 21-57.
  • 3Wang Q W,Sun J H,Li S Z. Consistency for bi(skew) symmetric solutions to systems of generalized Sylvester equations over a finite central algebra [J].Linear Algebra Appl, 2002,353 : 169-182.
  • 4Wei M,Wang Q.On rank-constrained Hermitian nonneg- five-definite least squares solutions to the matrix equation AXA H = B [J].Int J Comput Math, 2007,84 : 945-952.
  • 5Jiang T, Chen L. Algebraic algorithms for least squares problem in quaternionic quantum theory [J]. Computer Physics Communications, 2007,176 : 481-485.
  • 6Jiang T, Zhao J, Wei M. A new technique of quaternion equality constrained least squares problem [J]. Journal of Computational and Applied Mathematics, 2008,216 : 509-513.
  • 7Liu Y,Tian Y,Takane Y.Ranks of Hermitian and skew- Hermitian solutions to the matrix equation AXAH = B [J].Linear Algebra Appl, 2009,431 : 2359-2372.
  • 8Tian Y. Completing block matrices with maximal and minimal ranks [J].Linear Algebra Appl,2000,321:327-325.
  • 9Tian Y,Liu Y.Extremal ranks of some symmetric matrix expressions with applications [J]. SIAM J Matrix Anal Appl, 2006,28 : 890-905.
  • 10Liu Y,Tian Y.More on extremal ranks of the matrix ex- pressions A - BX X* B* with statistical applications [J].Numer Linear Algebra Appl, 2008,15 : 307-325.

二级参考文献12

共引文献9

同被引文献10

  • 1HUNGERFORD T W. Algebra [M]. New York: Spring-Verlag, 1980.
  • 2ZHANG F. Quaternions and matrices of quaternions [J]. Linear Algebra and its Applications, 1997, 251: 21-57.
  • 3王卿文,薛有才.体和环上的矩阵方程[M].北京:知识出版社,1996:167-183,.
  • 4WANG Q W, ZHANG H S, YU S W. On solutions to the quaternion matrix equation AXB+CYD=E [J]. Electronic Journal of Linear Algebra, 2008,17: 343-358.
  • 5JIANG T S, CHEN L. Algebraic algorithms for least squares problem in quaternionic quantum theory [J]. Computer Physics Communications, 2007,176(7) : 481-485.
  • 6JIANG T S, ZHAO J L, WEI M S. A new technique of quaternion equality constrained least squares problem [J]. Journal of Computational and Applied Mathematics, 2008,216 (2) : 509-513.
  • 7TIAN Y G. Completing triangular block matrices with maximal and minimal ranks [J]. Linear Algebra and Its Applications, 2000,321(1-3) : 327-345.
  • 8TIAN Y G, LIU Y H. Extremal ranks of some symmetric matrix expressions with applications [J]. SIAM Journal on Matrix Analysis and Applications, 2006,28(3), 890-905.
  • 9连德忠,谢锦山,吴敏丽,袁飞.四元数方程AXB+CYD=E通解中复矩阵分量极秩[J].复旦学报(自然科学版),2016,55(3):288-297. 被引量:1
  • 10连德忠.四元数向量和矩阵的实表示[J].厦门大学学报(自然科学版),2003,42(6):704-708. 被引量:10

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部