期刊文献+

基于动作轮廓特征的人体动作识别 被引量:1

Human Action Recognition Based on Contour Feature
下载PDF
导出
摘要 提出了一种人工挑选关键帧的人体动作识别方法.先从标准视频中提取出能代表姿势的关键动作,然后对待测视频中每一帧图像中人体动作和关键动作比较分类来确定动作时间的相关度和相似度.实验结果表明人工挑选关键帧具有数量少和动作代表性强的特性,基于动作轮廓特征的人体动作识别方法在识别速度上比传统的方法快,识别率也较高. A human action recognition method with artificial selection is presented .First, the key actions representing the posture are extracted from standard video key .then, the action in each image is compared and classified to define the correlation and similarity of action time .The experimental results show that the artificial selection of key frame has the characteristic of small quantity and strong representation .It also has the adoantage of high recognition speed and ratio .
作者 李枫
出处 《兰州工业学院学报》 2014年第3期8-12,共5页 Journal of Lanzhou Institute of Technology
关键词 视频处理 机器学习 模式识别 HU矩 video process machine learning pattern recognition Hu moment K-Nearest Neighbour
  • 相关文献

参考文献6

二级参考文献43

  • 1薛鸿民,刘志镜,刘利,周生雷.基于形状的图像检索的关键技术研究[J].计算机应用研究,2002,19(11):61-64. 被引量:5
  • 2王钲旋,李海军,周春光.高维空间中用计算街区和棋盘距离的线性组合代替计算欧氏距离[J].小型微型计算机系统,2004,25(12):2120-2125. 被引量:6
  • 3齐怀峰,韩昧华,接标,杨秀国.基于角的形状匹配[J].计算机技术与发展,2006,16(8):189-191. 被引量:1
  • 4Cover T M and Hart P E. Nearest neighbor pattern classification [J]. IEEE Transactions on Information Theory, 1967, 13(1): 21-27.
  • 5Nasibov E and Kandemir-Cavas C. Efficiency analysis of KNN and minimum distance-based classifiers in enzyme family prediction [J]. Computational Biology and Chemistry, 2009, 33(6): 461-464.
  • 6Zhang Rui, Jagadish H V, Dai Bing Tian, et al.. Optimized algorithms for predictive range and KNN queries on moving objects [J]. Information Systems, 2010, 35(8): 911-932.
  • 7Yao Bin, Li Fei Fei, and Kumar P. K nearest neighbor queries and kNN-joins in large relational databases (almost) for free [C]. IEEE 26th International Conference on Data Engineering (ICDE), Long Beach, CA, Mar. 1-6, 2010: 4-15.
  • 8Toyama J, Kudo M, and Imai H. Probably correct k-nearest neighbor search in high dimensions [J]. Pattern Recognition, 2010, 43(4): 1361-1372.
  • 9Gora G and Wojna A. A classifier combining rule induction and k-NN method with automated selection of optimal neighborhood [C]. Proceedings of the Thirteenth European Conference on Machine Learning, Heidelberg, Springer Berlin 2002. 2430: 111-123.
  • 10Dudai S A. The distance-weighted k-nearest neighbor rule [J]. IEEE Transactions on Systems, Man and Cybernetics, 1976, 6(4): 325-327.

共引文献172

同被引文献2

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部