期刊文献+

基于BP神经网络的感应电动机转子故障诊断方法 被引量:1

Rotor Fault Diagnosis for Induction Motor Based on BP Neural Network
下载PDF
导出
摘要 分析定子电流频谱特性诊断感应电动机转子故障,为了避免故障特征的边频分量被基频"旁瓣"淹没,利用扩展Park矢量法提取故障特征。在此基础之上,对所得到的故障特征矢量进行归一化,作为BP神经网络的输入量,同时以故障类型作为BP神经网络的输出量。设计BP神经网络结构,利用输入输出量对BP神经网络进行训练,进而实现感应电动机转子故障的自动识别。 In order to avoid the inundation of the edge frequency components of the fault characteristics by the lobes of basic frequency, while the stator current spectrum characteristics are analyzed for rotor fault diagnosis of the induction motor, the extended Park vector method is adopted to extract the fault characteristics. On this basis, the structure of BP neural network is designed, taking the normalized fault characteristic vectors as its input and the fault style as its output. The network is trained by these input and output to realize the auto-identification of the induction motor' s rotor fault.
出处 《煤矿机电》 2014年第3期89-91,共3页 Colliery Mechanical & Electrical Technology
关键词 电流频谱分析 PARK矢量 BP神经网络 故障诊断 current spectrum analysis Park vector BP (Back Propagation) neural network fault diagnosis
  • 相关文献

参考文献3

二级参考文献56

  • 1康敬东.电机轴承故障的电流识别法分析[J].轴承,2004(8):33-35. 被引量:5
  • 2骆志高,田海泉,仇学青.遗传算法在故障诊断中的应用研究综述[J].煤矿机械,2006,27(1):169-172. 被引量:8
  • 3田慕玲,王晓玲.电机故障诊断中的小波分析方法及小波基选取[J].煤矿机械,2007,28(5):176-178. 被引量:15
  • 4吴静,柳世考,邓堃.基于改进BP神经网络的故障诊断方法[J].工业仪表与自动化装置,2007(3):45-48. 被引量:7
  • 5Subhasis Nandi and Hamid A. Tolivat. Fault diagnosis of electrical machines - a review [ C ]. Proceedings from Electric Machines and Drives, 1999:219 -221.
  • 6Kenneth A. Loparo, M. L. Adams and M. Farouk Abdel - Magied,et al. Fault deteetion and diagnosis of rotating maehinery[ J ].IEEE Trans. on Industrial Electronics, 2000, 47(5) : 1005 - 1014.
  • 7Tommy W. S. Chow and Hong - Zhou Tan. HOS - based nonparametric and parametric methodologies for machine fault detection [ J ]. IEEE Trans. on Industrial Electronics, 2000, 47 (5) :1051 - 1059.
  • 8Kral C. , Wieser R. S. and Pirker F. , et al. Sequences of field - oriented control for the detection of faulty rotor bars in induction machines-the Vienna Monitoring Method[J]. IEEE Traus. on Industrial Electronics, 2000, 47 (5) : 1042 - 1050.
  • 9Mohamed EI Hachemi Benbouzid. A review of induetioll motors signature analysis as a medium for faults detection [ J ]. IEEE Trans.on Industrial Electronics, 2000, 47 ( 5 ) : 984 - 993.
  • 10Thomson, W.T. and Stewart, I. D.. Online current monitoring for fault diagnosis in inverter fed induction motors[ C ].Proceedings from Pov,'er Electronics and Variable -Speed Drives, 1988:432 -435.

共引文献70

同被引文献13

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部