期刊文献+

量子衍生差分进化算法的设计与实现 被引量:4

Design and Implementation of Quantum-inspired Differential Evolution Algorithm
下载PDF
导出
摘要 为提高差分进化算法的优化性能,从研究差分进化算法的实现机制入手,提出将差分策略与量子比特在Bloch球面的绕轴旋转相融合的新思想。个体采用基于Bloch球面描述的量子比特编码,采用差分策略计算当前个体上量子比特的旋转角度,采用向量积理论构造旋转轴,采用泡利矩阵构造旋转矩阵,以当前最优个体上相应量子比特为目标,在Bloch球面上沿旋转轴向目标比特旋转。采用Hadamard门实现个体变异。函数极小值优化的仿真结果表明,所提方法单步迭代的平均时间约为普通差分进化算法的13倍。当限定步数相同时,优化结果约为普通差分进化算法的0.3倍,当运行时间相同时,优化结果约为普通差分进化算法的0.4倍。从而表明所提算法计算效率降低,但寻优能力明显提高,整体优化性能优于原算法。 To enhance the optimization performance of differential evolution algorithm, by studying the implementation mechanism of differential evolution algorithm, a new idea of incorporating differential strategy and rotation of qubits in the Bloch sphere is proposed in this paper. In the proposed approach, the individuals are encoded by qubits described on Bloch sphere, and the rotation angles of qubits in current individual are obtained by differential strategy. The axis of rotation is designed by using vector product theory, and the rotation matrixes are constructed by using Pauli matrixes. Taking the corresponding qubits in current best individual as targets, the qubits in current individual are rotated to the target qubits about the rotation axis on the Bloch sphere. The Hadamard gates are used to mutate individuals. The simulation results of optimizing the minimum value of functions indicate that, for an iterative step, the average time of the proposed approach is 13 times as long as that of the classical differential evolution algorithm. When the same limited steps are applied in two approaches, the average optimization result of the proposed approach is 0.3 times as great as that of the classical differential evolution algorithm ; when the same running time is applied in two approaches, the average optimization result of the proposed approach is 0.4 times as great as that of the classical differential evolution algorithm. These results suggest that the proposed approach is inefficient in computational ability; however, it is obviously efficient in optimization ability, and the overall optimization performance is better than the classical differential evolution algorithm.
出处 《信号处理》 CSCD 北大核心 2014年第6期623-633,共11页 Journal of Signal Processing
基金 黑龙江省教育厅科学技术研究项目(12541059)
关键词 量子计算 量子比特编码 Bloch球面搜索 量子差分进化 quantum computation quantum bit encoding Bloch spherical search quantum differential evolution
  • 相关文献

参考文献15

  • 1Price K, Storn R, Eampinen J. Differential Evolutionary: A Practical Approaeh to Global Optimization [ M ]. Hei- delberg: Springer, 2004: 183-187.
  • 2Uday K. Advance in differential evolution [ M ]. Heidel- berg: Springer, 2008: 287-293.
  • 3Zhou Y Z, Li X Y, Gao L. A differential evolution algo- rithm with intersect mutation operator [ J ]. Applied Soft Computing, 2013, 13: 390-401.
  • 4Zhu W, Tang Y, Fang J A, Zhang W B. Adaptive popu- lation tuning scheme for differential evolution [ J ]. Infor- mation Sciences, 2013, 223 : 164-191.
  • 5Dexuan Z, Jianhua W, Liqun G, Steven L. A modified differential evolution algorithm for unconstrained optimiza- tion problems [ J ]. Neurocomputing, 2013, 120 : 469-481.
  • 6Musrrat A, Millie P, Ajith A. Unconventional initializa- tion methods for differential evolution[ J]. Applied Math- ematics and Computation, 2013, 219: 4474-4494.
  • 7Adam P P. Adaptive Memetic Differential Evolution with Global and Local neighborhood-based mutation operators [J]. Information Sciences, 2013, 241: 164-194.
  • 8曹爱华,李万春,李立萍.基于差分进化与遗传算法的多普勒外辐射源定位算法研究[J].信号处理,2009,25(10):1644-1648. 被引量:9
  • 9Wang Y, Cai Z X, Zhang Q F. Enhancing the search a- bility of differential evolution through orthogonal crossover[J]. Information Sciences, 2012, 185 : 153-177.
  • 10Dilip D, Jose R F. A real-integer-discrete-coded differen- tial evolution [ J]. Applied Soft Computing, 2013, 13 : 3384-3393.

二级参考文献19

共引文献122

同被引文献41

  • 1Eusuff M M, Lansey K E. Optimization of water distribution network design using the shuffled frog leaping algorithm[J]. Journal of Water Resources Planning and Management, 2003, 129(3):210-225.
  • 2Sun J, Wu X J, Vasile P, et al. Convergence analysis and improvements of quantum-behaved particle swarm optimization[J]. Information Sciences, 2012, 193:81-103.
  • 3Lu T C, Yu G R. An adaptive population multi-objective quantum-inspired evolutionary algorithm for multi-objective 0/1 knapsack problems[J]. Information Sciences, 2013, 243:39-56.
  • 4Abdesslem L. A hybrid quantum inspired harmony search algorithm for 0-1 optimization problems[J]. Journal of Computational and Applied Mathematics, 2013, 253:14-25.
  • 5Jiaquan G, Jun W. A hybrid quantum-inspired immune algorithm for multi-objective optimization[J]. Applied Mathematics and Computation, 2011, 217:4754-4770.
  • 6Han K H, Kim J H. Quantum-inspired evolutionary algorithm for a class of combinatorial optimization[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(6):580-593.
  • 7Benenti G, Casati G, Strini G. Principles of quantum computation and information (Column I:Basic concepts)[M]. Singapore:World Scientific Publishing Company, 2004:99-187.
  • 8郑仕链,楼才义,杨小牛.基于改进混合蛙跳算法的认知无线电协作频谱感知[J].物理学报,2010,59(5):3611-3617. 被引量:42
  • 9方伟,孙俊,谢振平,须文波.量子粒子群优化算法的收敛性分析及控制参数研究[J].物理学报,2010,59(6):3686-3694. 被引量:116
  • 10骆剑平,李霞,陈泯融.基于改进混合蛙跳算法的CVRP求解[J].电子与信息学报,2011,33(2):429-434. 被引量:31

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部