期刊文献+

一种混合模式的协同过滤算法 被引量:2

A Mixed Mode Collaborative Filtering Algorithm
下载PDF
导出
摘要 当今是一个数据爆炸时期,促进信息过滤技术发展,个性化推荐系统作为其中一种重要的应用方式,已经成为很多网站一种个性化信息服务方式,但传统的协同过滤算法存在扩展性和稀疏性的问题。提出一种基于项目聚类、项目语义相似度和奇异值分解的混合推荐模型,来应对传统的协同过滤推荐系统面临的算法的伸缩性问题、数据稀疏性问题和推荐的精准度问题,进行推荐。结果表明,与传统的算法相比,使用该改进算法能显著地提高推荐系统的推荐质量。 The world has entered a data explosion era, promoting the rapid development of information filtering technology. Personalized recommen- dation system is an important form of information filtering, has become indispensable to each big mainstream website of a new generation of personalized information service form. To solve the traditional collaborative filtering algorithm existing the sparsity and sealability prob- lems, proposes a collaborative filtering algorithm based on Canopy clustering, Semantic similarity between items and singular value de- composition to deal with the traditional collaborative filtering recommendation system scalability, the algorithm of data sparsity problem and recommendation accuracy problem. The experimental results show that, compared with the user based collaborative filtering algo- rithm, this algorithm can improve the similarity calculation accuracy under the cold start problem.
作者 颜丰 张琳
出处 《现代计算机(中旬刊)》 2014年第5期20-25,共6页 Modern Computer
基金 上海市教委科研创新项目(No.12ZZ153)
关键词 协同过滤 推荐系统 聚类 Collaborative Filtering Algorithm Recommendation System Clustering
  • 相关文献

参考文献7

二级参考文献31

  • 1左孝陵,李为监,刘永才等.离散数学[M].上海:上海科学技术文献出版社,2003:280-286.
  • 2[1]Breese J,Hecherman D,Kadie C.Empirical Analysis of Predictive Algorithms for Collaborative Filtering[A].Proceed ings of the 14th Conference on Uneertainty in Artifical Itelligence(UAI-98)[C].New York:ACM Press,1998:43 -52.
  • 3[2]Akira Sato,Takahisa Ando,Hiroya Inakoshi,et al.Personalization System based on Dyanamic Learning[J].Journal of the Royal Statistical Society,1997,38(1):44-59.
  • 4[3]Stawar B,Karypis G,Konstan J,et al.Item-Based Collaborative Filtering Recommendation Algorithms[A].Proceed ings of the Tenth International World Wide Web Conference[C].Paris:IEEE Computer Society Press,2001:285 -295.
  • 5[4]Yu Li,Liu Lu,LiXuefeng.A Hybid Collaborative Fitering Method for Multiple-Interests and Multiple Content Recommendation in E-Commerce[J].Expert Systems with Applications,2005,28(1):67 -77.
  • 6[5]Starwar,G Karypis,J Konstan,et al.Item-Based Collaborative Filtering Recommendation Algorithms[A].Proc of the 10th Int,l World Wide Web Conf[C].New York:ACM Press,2001:285-295.
  • 7Goldberg D,Nichols D.Using Collaborative Filtering to Weave an Information Tapestry[J].Communications of the ACM,1992,35(12):61-70.
  • 8Hedocker J.Clutering Items for Collaborative Filtering[C]//Proceedings of the ACM SIGIR Workshop on Recommender Systems.[S.10.]:ACM Press,2002.
  • 9Hart Seng-Chee.RecTree:A Linear Collaborative Filtering Algorithm[D].British Columbia,Canada:Simon Fraser University,2000.
  • 10Davies D L,Bouldin D W.A Cluster Separation Measure[J].IEEE Trims.on Pattern Anal.and Machine Intell.,1979,1(4):224-227.

共引文献71

同被引文献12

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部