期刊文献+

基于蚁群算法的云计算联盟资源调度 被引量:5

Resource Scheduling Method Based on Ant Colony for Cloud Computing Federation
下载PDF
导出
摘要 针对目前云计算联盟的架构和单云环境下资源调度的研究缺少对云计算联盟下的资源调度问题的研究情况,建立了由云用户、云服务供应商和云联盟协调器组成的云计算联盟资源调度模型,为达到云供应商利益最大化,设计了任务-虚拟机-数据中心的调度算法,利用蚁群算法进行模型求解,并通过Cloudsim仿真软件证实了该算法的合理性,验证了供应商资源的数据中心负载率在60%~80%之间时达到均衡,并可获得最大利益。 Currently studies on cloud computing are focused on the architecture of cloud computing federation , or on the resource scheduling method under the single cloud environment .There are few studies about resource scheduling for cloud computing federation .To solve this problem , a resource scheduling model for cloud federation was proposed .It consisted of cloud users, cloud service providers and cloud federation coordinator .Furthermore , the scheduling algorithm of tasks-visual machinedata centers was designed to maximize the profits of providers .Then the ant colony algorithm was applied for model solution .Its rationality was confirmed by Cloudsim .It was verified that the resource load rate of data centers will achieve a balance between 60%-80%, and the providers will achieve the most profit .
出处 《武汉理工大学学报(信息与管理工程版)》 CAS 2014年第3期337-340,373,共5页 Journal of Wuhan University of Technology:Information & Management Engineering
基金 国家自然科学基金资助项目(71172043 71072077) 国家科技支撑计划基金资助项目(2013BAH13F01 2012BAH93F04) 中央高校基本科研业务费专项资金资助项目(2012-IB-063 2012-IB-060) 中央高校基本科研业务费专项资金资助武汉理工大学自主创新优秀博士论文培育基金资助项目(2013-YB-017)
关键词 蚁群算法 云计算联盟 资源调度 供应商利益最大化 负载均衡 ant colony algorithm cloud computing federation resource scheduling suppliers benefit the most load balancing
  • 相关文献

参考文献10

  • 1HASSAN M M, HUH E N. Overview of cloud compu- ting and motivation of the work [ M ]. New York : Springer, 2013 : 1 - 12.
  • 2MARSTON S, LI Z , BANDYOPADHYAY S, et al. Cloud computing - the business perspective[ J ]. De- cision Support Systems, 2011,51 (1) :176- 189.
  • 3KESSACI Y, MELAB N, TALBI E G. A pareto - based metaheuristic for scheduling HPC applications on a geographically distributed cloud federation [ J ]. Cluster Computing, 2012( 1 ) : 1 - 18.
  • 4BRUNEO D, LONGO F, PULIAFITO A. Modeling energy - aware cloud federations with SRNs [ M ]. Hei- delberg:Springer, 2012:277 - 307.
  • 5YANG X Y, NASSER B, SURRISGE M, et al. A business- oriented cloud federation model tbr real - time online interactive applications [ J ]. Future Gen- eration Computer Systems,2012,28 ( 8 ) : 1158 - 1167.
  • 6DANILO A, SARA C, MICHELE C. Dual time- scale distributed capacity allocation and load redirect algorithms for cloud systems [ J ]. Journal of Parallel and Distributed Computing, 2012,72(6) :796 -808.
  • 7VICTOR T, ANNA T, ALEXANDER B. Resource se- lection algorithms for economic scheduling in distribu- ted systems [ J]. Procedia Computer Science, 2011, 30 (4) :2267 - 2276.
  • 8SAURABH K G, CHEE S Y, ARUN A, et al. Envi- ronment - conscious scheduling of HPC applications on distributed cloud - oriented data centers[ J ]. J Parallel Distrib Comput, 2011,71 ( 24 ) : 732 - 749.
  • 9华夏渝,郑骏,胡文心.基于云计算环境的蚁群优化计算资源分配算法[J].华东师范大学学报(自然科学版),2010(1):127-134. 被引量:112
  • 10MICHAEL A, ARMANDO F, REAN G. Above the clouds : a berkeley view of cloud computing [ J ]. UC Berkeley Reliable Adaptive Distributed System Labo- ratory ,2009,30 ( 10 ) : 5 - 6.

二级参考文献9

  • 1张晓杰,孟庆春,曲卫芬.基于蚁群优化算法的服务网格的作业调度[J].计算机工程,2006,32(8):216-218. 被引量:17
  • 2潘达儒,袁艳波.一种基于AntNet改进的QoS路由算法[J].小型微型计算机系统,2006,27(7):1169-1174. 被引量:6
  • 3MC EVOY G V, SCHULZE B. Using clouds to address grid limitations[C]//MGC'08. Belgium: Leuven Press, 2008.
  • 4IAN F, YONG Z. IOAN R, et al. Cloud computing and grid computing 360 Degree compared[C]//Grid Computing Environments Workshop. [s.l.]: IEEE, 2008.
  • 5HUAN L, DAN O. Accenture technology labs gridBatch: Cloud computing for large-scale data-Intensive batch[C] //CCGRID 2008. Shanghai:[s. n. ], 2008.
  • 6Amazon web services (TM). Amazon Elastic Compute Cloud (Amazon EC2)[EB/OL]. [2008-10-24]. http: //aws. amazon.com/ec2. 2008.
  • 7Amazon web services (TM). Amazon Simple Storage Service ( Amazon S3 ) [ EB/OL].[ 2008-10-24]. http:// aws. amazon.com/s3.
  • 8YANG C H, DASDAN A, HSIAO R L, et al. Map-reduce-merge. Simplified relational data processing on large elusters[C]//International conference on management of data. CA, USA: ACM SIGMOD, 2007.
  • 9GHEMAWAT S, GOBLOFF H, LEUNG S T. The google file system[C]//19th ACM Symposiun on Operating System 2003. New York: Association for Computing Machinery, 2009.

共引文献111

同被引文献37

  • 1李军,张建勇.紧急救灾物资物流配送系统研究[J].天津职业大学学报,2006,15(2):37-40. 被引量:15
  • 2计国君,朱彩虹.突发事件应急物流中资源配送优化问题研究[J].中国流通经济,2007,21(3):18-21. 被引量:42
  • 3Zhenhua Wang. Workload Balancing and adaptive resource management for the swift storage system on cloud[J]. Future Generation Computer Systems, 2014,38 (4):32-37.
  • 4Li K,Xu G,Zhao G,et al. Cloud task scheduling based on load balancing ant colony optimization[C]//Chinagrid Confer- ence(ChinaGrid) ,2011 Sixth Annual. IEEE,2011:3-9.
  • 5Krishna P V. Honey bee behavior inspired load balancing of tasks in cloud computing environments[J]. Applied Soft Com- puting, 2013,13 (5) :2292-2303.
  • 6Yu Q,Chen L,Li B. Ant colony optimization applied to web service compositions in cloud computing[J]. Computers & Electrical Engineering, 2015,41:18-27.
  • 7Nishant K,Sharma P,Krishna V,et al. Load balancing of nodes in cloud using ant colony optimization[C]//Computer Modelling and Simulation (UKSim), 2012 UKSim 14th International Conference on. IEEE,2012:3-8.
  • 8Zhang Z,Zhang X. A load balancing mechanism based on ant colony and complex network theory in open cloud com- puting federation[C]//Industrial Mechatronics and Automation (ICIMA),2010 2nd International Conference on. IEEE, 2010, 2: 240-243.
  • 9De Falco I,Laskowski E,Olejnik R,et al. Extremal Optimization applied to load balancing in execution of distri- buted programs[J]. Applied Soft Computing,2015,30:.501-513.
  • 10张友胜,赵钊,刘振岭.一种新型综合指挥调度系统[J].无线电工程,2008,38(6):5-7. 被引量:8

引证文献5

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部