期刊文献+

基于选择性预测策略的协同过滤推荐算法

Collaborative Filtering Recommendation Algorithm Based on Selective Prediction Strategy
下载PDF
导出
摘要 针对传统协同过滤推荐算法在用户评分数据极端稀疏情况下无法取得令人满意的推荐质量问题,结合User-based和Item-based协同过滤算法思想,提出了一种基于选择性预测策略的协同过滤推荐算法,算法利用高相似度阈值来计算用户相似性和项目相似性,并通过形成用户最近邻居集和项目最近邻居集来预测填充评分矩阵。基于Movielens数据集的实验表明,改进的算法有效改善了传统协同过滤推荐算法的数据稀疏性和扩展性问题,明显提高了系统的推荐质量。 The user rating data in traditional collaborative filtering recommendation algorithm are extremely sparse , which results in poor recommendation quality .A recommendation algorithm based on selective prediction strategy was proposed .The user-based recommendation algorithm was combined with item -based recommendation algorithm .The user similarity and the item similarity were calculated by high similarity threshold and the user-item matrix was evaluated by finding the neighbors of users and items.The experimental results based on MovieLens data set show that the improved algorithm could solve the problem of data sparsity and scalability , and it could improve the accuracy of system recommendation significantly .
出处 《武汉理工大学学报(信息与管理工程版)》 CAS 2014年第3期365-368,共4页 Journal of Wuhan University of Technology:Information & Management Engineering
基金 山东省高等学校科技计划基金资助项目(J12LN73) 山东省艺术科学重点科研基金资助项目(2012445)
关键词 协同过滤 选择性预测策略 平均绝对偏差 collaborative filtering selective prediction strategy mean absolute error
  • 相关文献

参考文献10

  • 1BREESE J, HECHERMAN D, KADIE C. Empirical analysis of predictive algorithms for collaborative filte- ring[ C]//Proceedings of the 14th Conference on Un- certainty in Artificial Intelligence ( UAI - 98 ). [S. 1. ] :[s. n. ] ,1998:43 -52.
  • 2TH R, KJ O, HAN I. The collaborative filtering rec- ommendation based on SOM cluster - indexing CBR [ J ]. Expert Systems with Applications,2003,25 ( 3 ) : 413 -423.
  • 3WU B, SHI Z Z. A clustering algorithm based on swarm intelligence [ C ] // Proceedings of the IEEE International Conference on Info - tech and Info - net Proceeding. [ S. 1. ] :[ s. n. ] ,2001:58 -66.
  • 4OYANAGI S, KUBOTA K, NAKASE A. Application of matrix clustering to Web log analysis and access prediction [ C ]//Proceedings of the Fourteenth Confer- enee on Uncertainty Collaborative Filtering. [ S. 1. ] : [s. n. ] ,1998:65 -70.
  • 5SARWAR B, KARYPIS G, KONSTAN J, et al. Ap- plication of dimensionality reduction in recommender system : a case study [ C ] // Proceedings of the ACM Web KDD Workshop on Web Mining for E - com- merce. New York : ACM Press,2000:82 - 90.
  • 6SARWAR B, KARYPIS G, KONSTAN J, et al. Item - based collaborative filtering recommendation algo- rithms [ C ] // Proceedings of the Tenth International World Wide Web Conference. [ S. 1. ]: [ s. n. ] ,2001 : 285 - 295.
  • 7王惠敏,聂规划.融合用户和项目相关信息的协同过滤算法研究[J].武汉理工大学学报,2007,29(7):160-163. 被引量:5
  • 8聂规划,罗迹,陈冬林.面向Web服务组合推荐的关联规则研究[J].武汉理工大学学报(信息与管理工程版),2012,34(5):588-591. 被引量:2
  • 9成桂兰,刘旭东,陈德人.基于混合聚类的个性化推荐算法[J].武汉理工大学学报(信息与管理工程版),2011,33(3):379-381. 被引量:4
  • 10邓爱林,朱扬勇,施伯乐.基于项目评分预测的协同过滤推荐算法[J].软件学报,2003,14(9):1621-1628. 被引量:558

二级参考文献41

共引文献565

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部