期刊文献+

软化指数对混凝土断裂过程区尺度的影响 被引量:1

Influence of Tensile Strain Softening Index on Size of Fracture Process Zone
下载PDF
导出
摘要 应用Muskhelishvil应力函数全场解,根据幂指数函数描述的混凝土拉应变软化模型导出断裂过程区(FPZ)过程值及临界值的解析表达式,分析了在最大拉应变强度理论下软化指数对FPZ过程值及临界值的影响。结果表明:混凝土FPZ过程值及临界值都随着软化指数的增加而增加,不同泊松比下变化规律相近。 The developing size and critical size of concrete fracture process zone ( FPZ) is obtained by use of a power exponent function considering the effect of the tensile strain softening based on the stress function of Muskhelishvil .The influences of tensile strain softening index on the developing size and critical size of FPZ are studied .The results show that the developing size and critical size of FPZ increase with the increasing tensile strain softening index and the law is very identical with different Poisson's ratios.
出处 《石家庄铁道大学学报(自然科学版)》 2014年第2期19-22,共4页 Journal of Shijiazhuang Tiedao University(Natural Science Edition)
基金 河北省高等学校科学技术研究重点项目(ZH2012040)
关键词 混凝土 断裂力学 断裂过程区 软化指数 concrete fracture mechanics fracture process zone ( FPZ) strain softening index
  • 相关文献

参考文献12

  • 1Kaplan M F. Crack propagation and the fracture of concrete [ J]. J ACI, 1961,58:591-610.
  • 2Hillerborg A. Analysis of fracture by means of the fictitious crack model, particularly for fiber-reinforced concrete [ J ]. Int J Ce- ment compos, 1980(2) :177-188.
  • 3Bazant Z P, Pang S D, Vorechovsky M. Energetic - statistical size effect simulated by SFEM with stratified sampling and crack band model [ J]. International Journal for Numerical Methods in Engineering, 2007, 71 (2) : 1297-1320.
  • 4Jenq Y S,Shah S P. Two parameter fracture model for concrete[ J]. Journal of Engineering Mechanics, 1985,111 (10) :1227- 1241.
  • 5Duan S J, Nakagawa K. Stress functions with finite stress concentration at the crack tips for central cracked panel[ J]. Engng Fracture Mech, 1988,29(5) : 517-526.
  • 6Zhu M, Chang W V. An unsymmetrical fracture process zone model and its application to the problem of radical crack with an inclusion in longitudinal shear deformation [ C ]//Mihashi H, Rokugo K. Fracture Mechanics of Concrete Structure. Freiburg: AEDIFICATIO Publishers, 1998 : 1097-1106.
  • 7Ohtsu M, Kaminaga Y, Munwam M C. Experimental and numerical crack analysis of mixed-mode failure in concrete by acous- tic emission and boundary element method [J]. Construction and Building Materials, 1999, 13( 1 ) : 57-64.
  • 8Landis E N. Micro-macro fracture relationship and acoustic emission in concrete [ J ]. Construction and Building Materials, 1999, 13(2) : 65-72.
  • 9吴智敏,赵国藩,宋玉普,黄承逵.光弹贴片法研究砼在疲劳荷载作用下裂缝扩展过程[J].实验力学,2000,15(3):286-292. 被引量:16
  • 10胡若邻,黄培彦,郑顺潮.混凝土断裂过程区尺寸的理论推导[J].工程力学,2010,27(6):127-132. 被引量:7

二级参考文献28

  • 1吴智敏,宋玉普,赵国藩,黄承逵,董超.疲劳荷载作用下混凝土裂缝扩展过程[J].大连理工大学学报,1997,37(S1):47-50. 被引量:14
  • 2吕运冰,朱咏秋.用裂尖应力场精确解对混凝土过程区的进一步分析[J].武汉交通科技大学学报,1995,19(3):239-244. 被引量:2
  • 3吴智敏,赵国藩,黄承逵.混凝土疲劳断裂特性研究[J].土木工程学报,1995,28(3):59-65. 被引量:25
  • 4GB4161-84金属材料平面应变断裂韧度KIC试验方法[S].北京:中国标准出版社,1997.
  • 5Ohtsu M, Kaminaga Y, Munwam M C. Experimental and numerical crack analysis of mixed-mode failure in concrete by acoustic emission and boundary element method [J]. Constraction and Building Materials, 1999, 13(1): 57--64.
  • 6Landis E N. Micro-macro fracture relationship and acoustic emission in concrete [J]. Construction and Building Materials, 1999, 13(2): 65--72.
  • 7Hillerborg A. Analysis of cracking formation and crack growth in concrete by means of fracture mechanics and finite elements [J]. Cement and concrete Research, 1976, 11(6): 773--782.
  • 8Bazant Z P, Pang S D, Vorechovsky M. Energeticstatistical size effect simulated by SFEM with stratified sampling and crack band model [J]. International Journal for Numerical Methods in Engineering, 2007, 71(2): 1297-- 1320.
  • 9Hu X, Duan K.Size effect: Influence of proximity of fracture process zone to specimen boundary [J]. Engineering Fracture Mechanics Fracture of Materials: Moving Forwards, 2007, 74(7): 1093-- 1100.
  • 10Bazant Z P. Size effect [J]. International Journal of Solids and Structures, 2000, 37(1-2): 69--80.

共引文献23

同被引文献17

  • 1Ohtsu M, Kaminaga Y, Munwam M C. Experimental and numerical crack analysis of mixed-mode failure in concrete by acoustic emission and boundary element method [J]. Construction and Building Materials, 1999, 13(1): 57-64.
  • 2Sagar R V, Prasad R V,Prasad B K R, Rao M V M S. Microcracking and fracture process in cement mortar and con- crete: a comparative study using acoustic emission technique [J]. Experimental Mechanics, 2013, 53(1): 1161-1175.
  • 3Hillerborg A. Analysis of fracture by means of the fictitious crack model, particularly for fiber-reinforced concrete [J]. Int J Cement Compos, 1980(2) : 177-188.
  • 4Baant Z P, Pang S D, Vorechovsky M. Energetic-statistical size influence simulated by SFIM with stratified sampling and crack band model [J]. International Journal for Numerical Methods in Engineering, 2007, 71(2) : 1297-1320.
  • 5Duan S J, Nakagawa K. Stress functions with finite stress concentration at the crack tips for central cracked panel [J]. Engineering Fracture Mechanics. , 1988, 29:517-526.
  • 6Sucedo L, Yu R C, Ruiz G. Fully-developed FPZ length in quasi-brittle materials [J]. International Journal of Fracture, 2012, 178:97-112.
  • 7Benvenuti E, Tralli A. Simulation of finite-width process zone in concrete-like materials by means of a regularized ex- tended finite element model f-J]. Computational Mechanics, 2012, 50: 479-497.
  • 8Su R K L, Chen H H N, Kwan A K H. Incremental displacement collocation method for the evaluation of tension sof- tening curve of mortar [J]. Engineering Fracture Mechanics, 2012, 88: 49-62.
  • 9Erarslan N. A study on the evaluation of the fracture process zone in CCNBD rock samples [J]. Exprimental Mechan- ics, 2013, 53(4) : 1475-1489.
  • 10Schmidt R.A. Microcrack model and its significance to hydraulic fracturing and fracture toughness testing [C]//Rolla M O. Proceedings of the 21st US Symposium on Rock Mechanics. USA: University of Missouri, 1980:581-590.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部