期刊文献+

锌空电池气体扩散电极浸液量对放电性能的影响 被引量:2

On the Influence of Infusion Mass on Discharging Performance of Gas diffusion Electrode in Zinc-Air Battery
原文传递
导出
摘要 锌空电池气体扩散电极在存放和放电过程中,电解液会在毛细力的作用下不断浸入电极。电解液在气体扩散电极中的浸入量与分布情况决定了气体扩散电极中的化学反应活化区,从而影响放电性能。通过实验测量了气体扩散电极开始浸液的4天内浸液量与放电性能的关系,并借助拓扑网络数值模拟电解液浸入多孔介质的过程帮助理解该实验现象。结果表明,随着放电过程的进行,浸液量和分布情况不断变化;气体扩散电极放电性能变化主要分为3个阶段:浸液饱和度为39.4%时放电性能最佳;浸液开始2~24小时进行迅速,浸液饱和度达到81%,放电性能小幅下降;24小时之后浸液增速大幅减缓,放电功率随浸液量增加大幅下降。 During storage and discharging process of zinc-air battery, electrolyte may penetrate into gas diffusion electrode ceaselessly due to capillary force. Chemical reaction activating area, thereby the discharging performance, is determined by infusion mass and distribution of electrolyte penetrated into gas diffusion electrode. Relationship between the infusion mass and discharging performance in 4 days after electrolyte penetration beginning was experimentally studied, and with the support of topology network, the process of electrolyte penetration into porous media was numerically simulated. Results indicate that along with the penetration process, the infusion mass and its distribution keep changing, the discharging performance of gas diffusion electrode can be divided into three stages: when infusion saturation degree reaches 39. 4~//00, electrode presents the best discharging performance; from 2-24 hours after electrolyte penetration beginning, penetration develops quickly, when infusion saturation degree reaches 81%, discharging performance declines slightly; after 24 hours, penetration growth slow down sharply, and the discharge power dropped significantly with the increase of infusion.
出处 《实验力学》 CSCD 北大核心 2014年第3期353-360,共8页 Journal of Experimental Mechanics
基金 国家自然科学基金(项目编号:10872193)
关键词 气体扩散电极 锌空电池 浸液量 放电性能 数值模拟 拓扑网络 gas diffusion electrode zinc-air battery infusion mass penetrated electrolyte discharge performance numerical simulation t6pology network
  • 相关文献

参考文献18

  • 1Li Y, Gong M, Liang Y, et al. Advanced zinc-air batteries based on high-performance hybrid electrocatalysts[J]. Nature Communications, 2013, 4:1805.
  • 2Armand M, Tarascon J M. Building better batteries[J]. Nature, 2008, 451:652-657.
  • 3Girishkumar G, McCloskey B, Luntz A C, et al. Lithium-air battery: promise and challenges[J]. The Journal of Physical Chemistry Letters, 2010, 1(14) : 2193- 2203.
  • 4Lee J S, Tai Kim S, Cao R, et al. Metal-air batteries with high energy density: Li-air versus Zn-air[J]. Advanced Energy Materials, 2011, 1 (1) : 34- 50.
  • 5Zhang J M, Chen W H. A New Composite Electrocatalyst, TiO2/AC, for Oxygen Reduction in Zinc-Air Battery [J]. Advanced Materials Research, 2012, 347:3621-3625.
  • 6Du G, Liu X, Zong Y, et al. CoaO4 nanoparticle-modified MnO2 nanotube bifunctional oxygen cathode catalysts for rechargeable zinc-air batteries[J]. Nanoscale, 2013, 5(11):4657-4661.
  • 7Liang Y, Wang H, Diao P, et al. Oxygen reduction eleetrocatalyst based on strongly coupled cobalt oxide nanocrystals and carbon nanotubes[J]. Journal of the American Chemical Society, 2012, 134(38) : 15849-15857.
  • 8Zloczewska A, Jonsson-Niedziolka M. Efficient air-breathing bioeathodes for zinc/oxygen botteries[J]. Journal of Power Sources, 2013, 228 : 104- 111.
  • 9杨永青,徐献芝,李清宇,刘晓毅.锌空气电池电极表面渗液现象的研究[J].实验力学,2012,27(5):637-642. 被引量:2
  • 10Lysenko V A. Current trends in the design of gas-diffusion layers.for fuel cells[J]. Fibre Chemistry, 2008, 40 (3) : 226-233.

二级参考文献83

共引文献70

同被引文献6

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部