期刊文献+

颗粒状食品视觉检测分选技术的发展 被引量:4

Development of visual detection and sorting technology for granular food
下载PDF
导出
摘要 视觉检测技术在颗粒状食品加工过程中应用广泛,代替了传统的人工分选,保证了检测识别的客观性和准确性,大幅提高了单位时间内高品质颗粒状食品的产量。本文介绍了颗粒状食品品质问题和近代机器视觉关键技术,就近十年来机器视觉检测分选技术在颗粒状食品加工品质检测和分选中的最新研究现状进行了综述,并阐述了现今研究所存在的问题和未来的发展方向。 Instead of the traditional manual sorting,visual detection technology is widely used in granular foodprocessing to ensure the objectivity and accuracy of detection and identification and substantially increase theproduction quantity of high-quality granular foods per unit time.This paper introduced granular food quality issuesand the modern key technologies of machine vision, reviewed the past decade latest research status of sortingmachine vision technology used in the food processing and quality testing of granular sorting, and finally pointedout the existed issues in current research and future developing orientation.
出处 《食品工业科技》 CAS CSCD 北大核心 2014年第13期378-381,386,共5页 Science and Technology of Food Industry
基金 教育部中央高校基本科研业务专项基金资助(JUSRP51316B) 江苏省食品先进制造装备技术重点实验室(江南大学)资助
关键词 颗粒状食品 视觉检测 发展现状 granular food visual inspection development status
  • 相关文献

参考文献18

  • 1Krishna Kumar Patel.Machine vision system:a tool tbr quality inspection of food and agricultural products [ J ]. Journal of Food Science and Technology, 2012,49 ( 2 ) : 123-141.
  • 2Siriluk Sansomboonsuk, Nilin Afzt, lpurkar. Machine vision for rice quality evaluation [ C ]. Technology and Innovation for sustainable development conference,2008:343-346.
  • 3Tom Pearson. Hardware-based image processing for high- speed inspection of grains [ J ] . Computers and Electronics in Agriculture, 2009,69 ( 1 ) : 12-18.
  • 4W Medina, O Skurtys, J M Aguilera. Study on image analysis application for identification Quinoa seeds (Chennpodium quinoa Willd ) geographical provenance [ J ] .Fond Science and Tee hnolngy, 2010,43 ( 2 ) : 238 - 246.
  • 5刘樱瑛.基于机器视觉的稻米品质评判方法研究[D].南京:南京农业大学,2010.
  • 6Lei Yah, Sang- Ryong Lee, Seung- Han Yang, et ah CCD Rice Grain Positioning Algorithm for Color Sorter with Line CCD Camera [ J ] .The Online Journal on Power and Energy Engineering, 2010, 1 (4) : 125-129.
  • 7Tom Pearson, Dan Moore, Jim Pearson. A machine vision system for high speed sorting of small spots on grains [ J ]. Food Measure, 2012 ( 6 ) : 27-34.
  • 8李晶晶,王爱民,杨红卫.基于形状特征的大米虫蚀粒检测方法[J].农机化研究,2012,34(8):18-21. 被引量:4
  • 9柴玉华,高立群,王蓉,田磊.基于多尺度形态学大豆图像滤波方法[J].农业工程学报,2006,22(6):119-122. 被引量:11
  • 10Kivanc Kilic, Ismail Hakki Boyaci, K Hamit. A classification system for beans using computer vision system and artificial neural networks [ J ]. Journal of Food Engineering, 2007,78 : 897-904.

二级参考文献69

共引文献73

同被引文献21

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部