期刊文献+

Ti^(3+)掺杂的TiO_2纳米管阵列制备及其电化学阻抗谱研究 被引量:1

Preparation of Ti^(3+)-doped TiO_2 nanotube array and its electrochemical impedance spectroscopic study
原文传递
导出
摘要 在质量分数为1.0%的HF溶液中,对纯钛片进行阳极氧化,获得了TiO2纳米管(TNTs)阵列。采用扫描电镜和X射线衍射表征了TNTs阵列的表面形貌及晶型结构。在450°C下热处理可以使TNTs由无定形态转化为锐钛矿型。将热处理后的TNTs阵列置于1.5 mol/L的(NH4)2SO4电解液中进行电化学还原,制备了Ti3+掺杂的TNTs阵列。利用电化学阻抗谱研究了掺杂时间对纳米管阻抗的影响。X射线光电子能谱显示,在-1.45 V(相对于饱和甘汞电极)下经过60 s电化学还原自掺杂,可以使TNTs表面42.19%的Ti4+转化为Ti3+,从而有效降低了晶型转变后TNTs的阻抗。 A TiO2 nanotubes (TNTs) array was obtained on pure titanium substrate by anodic oxidation in 1.0wt% HF solution. The surface morphology and phase structure of the TNTs array were characterized by scanning electron microscopy and X-ray diffraction. The heat treatment at 450 ~C changes the TNTs from amorphous structure to anatase form. A Ti3+-doped TNTs was prepared by electrochemical reduction of the heat-treated TNTs array in 1.5 mol/L (NH4)2SO4 electrolyte. The influence of self-doping time on conductivity of the TNTs was studied by electrochemical impedance spectroscopy. The results of X-ray photoelectron spectroscopy showed that nearly 42.9% Ti4+ in TNTs was reduced to Ti3+ after electrochemical self-doping at -1.45 V (vs. saturated calomel electrode) for 60 s, thus efficiently decreasing the impedance of TNTs after the formation of anatase phase.
出处 《电镀与涂饰》 CAS CSCD 北大核心 2014年第11期453-456,502,共4页 Electroplating & Finishing
基金 国家自然科学基金青年基金资助项目(21103150)
关键词 二氧化钛 纳米管阵列 热处理 还原 三价钛 自掺杂 电化学阻抗谱 titania nanotube array heat treatment reduction trivalent titanium self-doping electrochemicalimpedance spectroscopy
  • 相关文献

参考文献13

  • 1I1JIMA S. Helical microtubules of graphitic carbon [J]. Nature, 1991, 354 (6348): 56-58.
  • 2ZWILLING V, AUCOUTURIER M, DARQUE-CERETTI E. Anodic oxidation of titanium and TA6V alloy in chromic media: An electrochemical approach [J]. Electrochimiea Acta, 1999, 45 (6): 921-929.
  • 3ZWILLING V, DARQUE-CERETTI E, BOUTRY-FORVEILLE A, et al. Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy [J]. Surface and Interface Analysis, 1999, 27 (7): 629-637.
  • 4SANDER M S, COTI M J, GU W, et al. Template-assisted fabrication of dense, aligned arrays of titania nanotubes with well-controlled dimensions on substrates [J]. Advanced Materials, 2004, 16 (22): 2052-2057.
  • 5KASUGA T, HIRAMATSU M, HOSON A, et al. Formation of titanium oxide nanotube [J]. Langmuir, 1998, 14 (12): 3160-3163.
  • 6VARGHESE O K, MOR G K, GRIMES C A, et al. A titania nanotube- array room-temperature sensor for selective detection of hydrogen at low concentrations [J]. Journal of Nanoscience and Nanotechnology, 2004, 4 (7): 733-737.
  • 7MOR G K, SHANKAR K, PAULOSE M, et al. Enhanced photocleavage of water using titania nanotube arrays [J]. Nano Letters, 2005, 5 (1): 191-195.
  • 8XIE Y B, HUANG C J, ZHOU L M, et al. Supercapacitor application of nickel oxide-titania nanocomposites [J]. Composites Science and Technology, 2009, 69 (13): 2108-2114.
  • 9GHICOV A, TSUCHIYA H, HAHN R, et al. TiO2 nanotubes: H+ insertion and strong electrochromic effects [J]. Electrochemistry Communications, 2006, 8 (4): 528-532.
  • 10TSUCHIYA H, MACAK J M, GHICOV A, et al. Characterization of electronic properties of Ti02 nanotube films [J]. Corrosion Science, 2007, 49 (1): 203-210.

二级参考文献1

共引文献17

同被引文献19

  • 1OLAH G A, PRAKASH G K S, GOEPPERT A. Anthropogenic chemical carbon cycle for a sustainable future [J]. Journal of the American Chemical Society, 2011, 133 (33): 12881-12898.
  • 2WANG J J, JING Y H, OUYANG T, et al. Photocatalytic reduction of CO2 to energy products using Cu-TiO2/ZSM-5 and Co-TiO2/ZSM-5 under low energy irradiation [J]. Catalysis Communications, 2015, 59: 69-72.
  • 3YUAN L, XU Y J. Photocatalytic conversion of CO2 into value-added and renewable fuels [J]. Applied Surface Science, 2015, 342: 154-167.
  • 4TSUI L K, WU L L, SWAMI N, et al. Photoelectrochemical performance of electrodeposited Cu20 on TiO2 nanotubes [J]. ECS Electrochemistry Letters, 2012, 1 (2): D15-D19.
  • 5ENGEL C J, POLSON T A, SPADO J R, et al. Photoelectrochemistry of porous p-Cu20 films [J]. Journal of the Electrochemical Society, 2007, 155 (3): F37-F42.
  • 6ZHAO L, DONG W, ZHENG F G, et al. Interrupted growth and photoelectroehemistry of Cu20 and Cu particles on TiO2 [J]. Eleetroehimica Aeta, 2012, 80: 354-361.
  • 7GHADIMKHANI G, DE TACCONI N R, CHANMANEE W, et al. Efficient solar photoelectrosynthesis of methanol from carbon dioxide using hybrid CuO-Cu20 semiconductor nanorod arrays [J]. Chemical Communications, 2013, 49 (13): 1297-1299.
  • 8HUANG Q, KANG F, LIU H, et al. Highly aligned Cu20/CuO/TiO2 core/shell nanowire arrays as photocathodes for water photoelectrolysis [J]. Journal of Materials Chemistry A, 2013, 1 (7): 2418-2425.
  • 9YANG X Y, XIAO T C, EDWARDS P P. The use of products from CO2 photoreduction for improvement of hydrogen evolution in water splitting [J]. International Journal of Hydrogen Energy, 2011.36 (11): 6546-6552.
  • 10XIAO Q, OUYANG L L. Photocatalytic photodegradation of xanthate over C, N, S-tridoped TiO2 nanotubes under visible light irradiation [J]. Journal of Physics and Chemistry of Solids, 201 l, 72 (1): 39-44.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部