期刊文献+

蜂群算法在离散变量结构优化设计中的应用 被引量:2

Application of Bee Colony Algorithm in Structural Optimization Design with Discrete Variables
原文传递
导出
摘要 基于二进制编码将设计变量与其离散取值进行空间映射,随机产生个体并形成初始群体,采取基因突变方法在其邻域范围内产生新食物源,构建了适用于求解离散变量结构优化设计问题的改进蜂群算法。以求解多模测试函数极值问题验证了改进蜂群算法的可行性。通过三杆桁架结构优化设计演示了改进蜂群算法在离散变量优化设计中的应用,优化结果与传统结构优化设计结果相比较,表明改进蜂群算法的有效性。运用蜂群算法求解十杆超静定桁架结构优化问题,计算结果表明改进蜂群算法求解离散变量结构优化问题是可行、有效的。 This paper presents a modified bee colony algorithm for the structural optimization design with discrete variables, which the encoding string and the discrete value are mapped, and a new neighboring food source is produced by mutation of individuals which depends on the fitness value. The performance of the modified bee colony algorithm is tested on the benchmark functions and compared with the basic bee colony algorithm; the experimental results indicate that the modified bee colony algorithm is effective. The application of modified bee algorithm in optimization design of structures with discrete variables is presented with an example of optimization design for three-bar hyper static truss structures with discrete variables. The comparison between the result obtained by traditional method and that by modified bee colony algorithm indicates that the latter is more effective for structural optimization with discrete variables. Modified bee colony algorithm is also used to solve a ten-bar truss structure with discrete variables. The result obtained by modified bee colony algorithm indicates that algorithm is effective and feasible on the structural optimization with discrete variables.
出处 《机械设计与研究》 CSCD 北大核心 2014年第3期22-24,28,共4页 Machine Design And Research
关键词 蜂群算法 离散变量 结构优化 桁架 bee colony algorithms structures optimization discrete variables truss
  • 相关文献

参考文献6

  • 1Karaboga D. An idea based on honey bee swarm for numerical opti- mization[ R ]. Turkey : Erciyes University, 2005.
  • 2Pham D T , Ghanbarzadeh A. Multi-objective optimization using the bees algorithm [ C ]//Proceedings of IPROMS 2007 Conference, ht- tp ://bees-algorithm. com/modules/2/7. pdf.
  • 3C S Chong, Y H Malcolm Low A I. Sivakumar, et al. A bee colony algorithm for neighborhood search in job shop scheduling problems [C-// Simulation Conference, 2006. WSC06. Proceedings of the Winter, 2006, http://www. lw20. com/2011071361973812, html.
  • 4Wong LiPei, Malcolm Yokehean LOW, C S Chong. Bee colony op- timization with local search for traveling salesman problem [ R ]. Sin- gapore : Nanyang Technological University, 2008.
  • 5苏晓勤,孙鹤旭,潘旭华.改进蜂群算法的旅行商问题仿真[J].计算机工程与设计,2013,34(4):1420-1424. 被引量:10
  • 6张思才,张方晓.一种改进遗传算法及在结构优化设计中的应用[J].机械强度,2005,27(6):766-769. 被引量:8

二级参考文献20

  • 1Goldberg D E. Genetic algorithms in search, optimization and machine learning. MA: Addison Wesley Publishing Reading, 1989.
  • 2Srinivas M, Patnaik L M. Adaptive probabilities of crossover and mutation in genetic algorithms. IEEE Transaction System, Man and Cybernetics.1994,24(4):656-667.
  • 3Stoffa Paul, Sen Mrinal K. Nonlinear multiparameter optimization using genetic algorithms: Inversion of plane-wave seismograms. Geophysics,1991,56(11):1 794-1 810.
  • 4Ilie S, Badica C. Effectiveness of solving traveling salesman problem using ant colony optimization on distributed multi-agent middleware [C]//Poland: Proceedings of the International Multiconference on Computer Science and Information Technology, 2010: 197-203.
  • 5KIM Y, CHO S B. A hybrid cultural algorithm with local search for traveling salesman problem [C] //Korea.. Proceedings of Computational Intelligence in Robotics and Automation, 2009 : 88-192.
  • 6陈明华,周本达.拉丁超立方体抽样混合遗传算法求解TSP问题[J].高等学校计算机数学学报,2011,33(2):138-144.
  • 7Whitfield J. Animal behavior: The wisdom of the bees [J]. Nature, 2010, 467 (7316): 658-659.
  • 8Karaboga D. An artificial bee colony (ABC) algorithm for numeric function optimization [C] //Indiana: Proceedings of IEEE Swarm Intelligence Symposium Indianapolis, 2006: 651-656.
  • 9Karaboga D, Gorkemli B. A combinatorial artificial bee colony algorithm for traveling salesman [C]//Istanbuh International Symposium on Innovations in Intelligent Systems and Applica tions, 2011: 50-53.
  • 10WONG Lipei, Malcolm Yoke Hean Low. A bee colony optimization algorithm for traveling salesman problem [C]//Kuala Lumpur: Second Asia International Conference on Modeling Simulation, 2008: 818-823.

共引文献16

同被引文献20

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部