期刊文献+

宽带低杂散LFM信号的产生方法与系统设计 被引量:1

Generating Method and System Design of Wide-band Low Spurious LFM Signal
下载PDF
导出
摘要 针对宽带雷达线性调频信号产生,采用FPGA电路和宽带DAC电路直接产生50 MHz^550 MHz的线性调频中频信号。将中频信号上变频到2 GHz^2.5 GHz的射频频段,再经过2倍频获得4 GHz^5 GHz的宽频带线性调频信号。为进一步提高射频输出信号的幅度/相位特性,采用幅/相预失真校准方法,并精心设计信号产生系统的中频电路和射频电路,进行了实验研究与分析。对实际系统的测试结果表明,系统产生LFM信号的带外杂散优于-55 dB,带内起伏小于±2 dB,且系统稳定、可靠。 For generating wideband radar linear frequency modtdation (LFM) signal, the FPGA circuit and wideband DAC circuit are used to generate 50 MHz -550 MHz LFM IF signal. The IF signal is up-converted to 2 GHz -2.5 GHz RF bands, and then after double octave obtains 4 GHz - 5 GHz wideband LFM signal. To further improve the RF output signal amplitude/phase characteristics, the amplitude/phase pre-distortion calibration methods are used, the IF and RF circuits are carefully designed, experiments and analysis are cartied out. According to the measurement results, the spurious signal involved in the system output is lower than -55 dB, the ripple in the band is below +2 dB. This system is quite stable and its performance meets the requirement of actual application.
出处 《现代雷达》 CSCD 北大核心 2014年第6期75-78,共4页 Modern Radar
基金 南京航空航天大学研究生创新基地(实验室)开放基金资助项目(kfjj120114) 中央高校基本科研业务费专项资金资助项目 江苏高校优势学科建设工程资助项目
关键词 线性调频信号 低杂散 预失真校准 linear frequency modulation low spurious pre-distortion calibration
  • 相关文献

参考文献6

二级参考文献18

  • 1Postema G B. Generation and performance analysis of wideband radar waveforms [ C ]. IEEE International Radar Conference, 1987:310 - 314.
  • 2Si Qiang, Li Yanzhong, Xiang Jingcheng. Design and implemention of an Ultra-wide band pulse compression signal generation [ C ]. IEEE international Radar Conference, 2001:533 - 537.
  • 3Orfanidis S J. Introduction to signal processing [ M ]. Prentice Hall International, Inc, 1991.
  • 4Brenner A R. Proof of concept for airborne SAR imaging with 5 cm resolution in X-band[C]. EUSAR 2010, Berlin, Germany, June 7-10, 2010: 615-618.
  • 5Doerry A W and Dubbert D F. Digital signal processing applications in high-performance synthetic aperture radar processing[J]. Signals, Systems and Computers, 2004, 1: 947-949.
  • 6Wilden H and Brener A R. The SAR/GMTI airborne radar PAMIR: technology and performance[C]. IEEE Microwave Symposium Digest, Anaheim, CA, USA, May 23-28, 2010: 534-537.
  • 7Cantalloube H-M J, and Dubois-Fernandez P. Airborne X-band SAR imaging with 10 cm resolution-technical challenge and preliminary results[C]. Proceedings of IGARSS'03, Palaiseau, France, 2003: 185-187.
  • 8Nicholas H T and Samueli H. An analysis of the output spectrum of direct digital frequency synthesizers in the presence of phase-accumulator truncation[C]. 41st Annual Frequency Control Symposium, Philadelphia, USA, May 27-29, 1987: 495-502.
  • 9Hu Shibing and Lu Jiqing. A novel digital predistortion technique for ultra wide-band radar pulse-compression signals[C]. 2011 Second International Conference on Mechanic Automation and Control Engineering (MACE), Inner Mongolia, China, July 15-17, 2011: 5508-5511.
  • 10Wang Jun, Cai Duoduoi, and Wen Yaya. Comparison of matched filter and dechirp processing used in linear frequency modulation[C]. 2011 IEEE 2nd International Conference on Computing, Control and Industrial Engineering (CCIE), Wuhan, China, Aug. 20 21, 2011:70 73.

共引文献11

同被引文献1

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部