期刊文献+

船舶舱室总体声学布局优化设计通用模型及解法 被引量:8

A General Model for Ship Cabins Acoustic Layout Optimization Design and Its Solution Method
下载PDF
导出
摘要 国际海事组织将于2014年采用新的更严格的船舶舱室噪声标准,在船舶总体设计阶段提前进行舱室总体声学布局优化设计是应对新标准的有效手段。船舶舱室总体声学布局优化设计问题研究的目的是如何根据舱室噪声限值指标,合理确定船舶各舱室类型的分布,使舱室声学降噪成本最低。本文通过将优化设计问题转化为指派问题(AP,Assignment Problem)描述,建立了定量化的舱室总体声学布局优化通用数学模型。给出了求解该模型的两种解法。解法一是针对指派问题的标准数学规划模型形式的匈牙利解法;解法二为基于该问题自身特殊性提出的求解该模型的准则法。通过实例,研究了不同约束条件下舱室总体声学布局的优化问题。结果表明,船舶舱室总体声学布局优化通用模型简单有效,两种解法计算结果相同,精度相当,可操作性强,效率高,且两种解法互为补充。 New strict standards and codes for noise level specification in ships will be adopted in 2014 by IMO (International Marine Organization). It is beneficial to control cabin acoustics performance during the ship overall design. This is the so called cabin acoustic layout optimization design. Rarely research on cabins acoustic layout optimization has been conducted in the past decades. In this paper, acoustics layout optimization problem is transformed into the standard form of assignment problem. A general optimization model for ship cabins acoustics layout optimization, namely how to assign each working/navigation/living space to the ship cabins, is established. Criterion method and the Hungarian algorithm are presented to solve the optimization model. The proposed criterion method is based on two principles: the rearrangement inequality, and the equality of global optimal solution and local optimal solution. The Hungarian algorithm is applied to this model. As examples, the layouts of cabins under different constraints are studied. Optimization results show that the proposed general model and methods are easy to understand and apply efficiently.
出处 《中国造船》 EI CSCD 北大核心 2014年第2期38-48,共11页 Shipbuilding of China
基金 国家国技术船舶国研计国项目(2012-533)
关键词 声学 布局优化 匈牙利算法 声学准则法 舱室声学布局优化 acoustics layout optimization Hungarian algorithm acoustic criterion ship cabins acoustic layout optimization
  • 相关文献

参考文献6

  • 1李云,龚昌奇.改进的遗传算法在游艇舱室布局优化设计中的应用[J].船海工程,2010,39(1):34-37. 被引量:12
  • 2张梅.专家系统在船舶舱室划分与布置设计中的应用[J].船舶与海洋结构物设计制造,2007(1).
  • 3张伯生,张丽,高圣国,周晋.运筹学(第二版)[M].北京:科学出版社,2012.
  • 4KUHN H W. The Hungarian method for the assignment problem[J]. Naval Research Logistics Quarterly, 1955(2): 83-97.
  • 5KONIG D. Graphs and matrices[J]. Hungarian, Mathematical and Physical Journal, 1931, 38:116-119.
  • 6COURANT R, JOHN F. Introduction to Calculus and Analysis (Volume 1) [M]. Springer-Verlag, 1965.

二级参考文献4

共引文献11

同被引文献46

引证文献8

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部