期刊文献+

纳微米级孔隙气体流动数学模型及应用 被引量:17

Mathematical model and application of gas flow in nano-micron pores
原文传递
导出
摘要 对纳微米级孔隙多孔介质内的气体流动进行了研究.利用克努森数划分流态,绘制了流态图版,阐明了不同区域的流动特征.基于Beskok--Karniadakis模型,对渗透率校正系数进行了改进,引入多项式修正系数,将Beskok--Karniadakis模型简化为二项式方程,并利用最小二乘法分段拟合得出多项式修正系数的取值.模型对比显示,简化后的模型具有较高的精确度.应用此模型推导出了纳微米级孔隙气体流量的计算公式.进行了室内微观渗流模拟实验,得到气体平面单向渗流规律,与由纳微米级孔隙气体流量公式计算所得渗流特征进行对比,结果显示本模型与实验数据拟合较好.采用本模型进行编程计算,对其影响因素进行分析,发现气体流量随压力平方差增加而增大,且增加趋势越来越快,并随多孔介质渗透率和克努森扩散系数的增加而增大. This article focuses on gas flow regularity in nano-micron porous media. The flow state was judged by Knudsen number, and then the flow state chart was drawn. The flow characteristics were illustrated for different regions. The correction coefficient of per-meability was improved based on the Beskok-Karniadakis model. By introducing polynomial correction coefficients, the Beskok-Kar-niadakis model was simplified to a binomial equation, and the values of polynomial correction coefficients were obtained by the least squares method. Compared with the Beskok-Karniadakis model, the simplified model has high accuracy. The flow rate equation in nano-micron porous media was developed based on the simplified model. The gas unidirectional seepage law was derived from indoor micro seepage experiment. The flow rate equation in nano-micron porous media agrees with experimental data. Factors influencing the gas flow rate were numerically studied by programming on the base of this model. It is found that the gas flow rate increases more and more quickly with the pressure square difference, and increases with the permeability of porous media and the Knudsen diffusion coeffi-cient.
出处 《北京科技大学学报》 EI CAS CSCD 北大核心 2014年第6期709-715,共7页 Journal of University of Science and Technology Beijing
基金 国家重点基础研究发展计划资助项目(2013CB228002) 提高油气采收率教育部重点实验室开放课题资助项目(NEPU--EOR--2012--003)
关键词 多孔介质 纳微米级孔隙 气体流动 渗透率 数学模型 流动模型 porous media nano-micron pores gas flow permeability mathematical models flow models
  • 相关文献

参考文献16

  • 1王华龙,柴振华,郭照立.致密多孔介质中气体渗流的格子Boltzmann模拟[J].计算物理,2009,26(3):389-395. 被引量:21
  • 2杨建,康毅力,李前贵,张浩.致密砂岩气藏微观结构及渗流特征[J].力学进展,2008,38(2):229-236. 被引量:50
  • 3Karniadakis G E, Beskok A. Microflows and Nanoflows: Funda- mentals and Simulation. Berlin : Springer, 2001.
  • 4Beskok A, Karniadakis G E. A model for flows in channels, pipes, and ducts at micro and nano scales. Microscale Thermophys Eng, 1999, 3(1) : 43.
  • 5Beskok A, Karniadakis G. Rarefaction and compressibility effects in gas microflows. Fluids Eng, 1996, 118(3) : 448.
  • 6Florence F A, Rushing J A, Newsham K E, et al. Improved per- meability prediction relations for low-permeability sands// Rocky Mountain Oil & Gas Technology Symposium. Denver, 2007:16.
  • 7杨建,康毅力,桑宇,李前贵.致密砂岩天然气扩散能力研究[J].西南石油大学学报(自然科学版),2009,31(6):76-79. 被引量:30
  • 8Civan F. A triple-mechanism fractal model with hydraulic disper- sion for gas permeation in tight reservoirs//SPE International Pe- troleum Conference and Exhibition in Mexico. Villahermosa, 2002.
  • 9林林,王爱国,张欣欣.粗糙微通道内稀薄气体流动与换热的蒙特卡洛直接模拟[J].北京科技大学学报,2010,32(3):384-389. 被引量:2
  • 10Javadpour F, Fisher D, Unsworth M, et al. Nanoscale gas flow in shale gas sediments. J Can Pet Technol, 2007, 46(10) : 55.

二级参考文献87

共引文献98

同被引文献207

引证文献17

二级引证文献125

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部