期刊文献+

利用稀疏非负矩阵分解的大转角SAR成像方法 被引量:2

Wide angle SAR imaging via sparse non-negative matrix factorization
下载PDF
导出
摘要 提出了一种采用稀疏非负矩阵分解(NMF)的大转角成像方法.首先将全孔径划分为若干相互重叠的子孔径,然后分别使用极坐标格式算法获得不同视角下的子图像,最终采用加入稀疏增强正则项的NMF算法在图像域对子图像进行迭代融合,获得目标增强和信噪比更高的全孔径综合图像.仿真实验结果验证了该方法的有效性. This paper proposes a novel WASAR imaging scheme , which divides the full aperture data into several overlapping sub-apertures and uses the Polar Format Algorithm ( PFA ) to obtain sub-images at different aspects . Finally we perform full aperture image composition via Non-negative Matrix Factorization ( NMF) with a sparse regularization term . The target feature of the synthesized image is enhanced and the SNR is improved . Simulation results verify the effectiveness of the novel approach .
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2014年第3期49-55,共7页 Journal of Xidian University
基金 国家自然科学基金资助项目(61001211) 973资助项目(2010CB731903) 西安电子科技大学基本科研业务费资助项目(JY10000902014)
关键词 合成孔径雷达 非负矩阵分解 稀疏 子孔径 图像融合 synthetic aperture radar(SAR) non-negative matrix factorization(NMF) sparseness subaperture image fusion
  • 相关文献

参考文献16

  • 1Moses R L, Potter L C, Cetin M. Wide Angle SAR Imaging [C]//Proceedings of SPIE: 5427, Algorithms for Synthetic Aperture Radar Imagery XI. Bellingham: SPIE, 2004: 164-175.
  • 2Moore T G. A FFT Based Algorithm for the Formation of Wide-angle ISAR Images Using EIP [C]//IEEE International Radar Conference. Piscataway: IEEE, 1995: 392-395.
  • 3Stojanovic I, Cetin M, Karl W C. Joint Space Aspect Reconstruction of Wide-angle SAR Exploiting Sparsity [C]// Proceedings of SPIE: 6470, Algorithm for Synthetic Aperture Radar Imagery XV. Bellingham: SHE, 2008: 697005.
  • 4刘启,洪文,谭维贤,王彦平,吴一戎.宽角合成孔径雷达二维缺失数据自适应幅相估计成像方法[J].电子与信息学报,2012,34(3):616-621. 被引量:3
  • 5殷海青,刘红卫.一种基于L_1稀疏正则化和非负矩阵分解的盲源信号分离新算法[J].西安电子科技大学学报,2010,37(5):835-841. 被引量:7
  • 6Lee D D, Seung H S. Learning the Parts of Objects by Non-negative Matrix Factorization [J]. Nature, 1999, 401(21) : 788-791.
  • 7Li Y, Ngom A. A New Kernel Non-negative Matrix Factorization and Its Application in Microarray Data Analysis [C]// IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology. Piscataway: IEEE, 2012: 371-378.
  • 8Guo R, Zhang L, Xing M, et al. Polarimetric SAR Image Fusion Using Nonnegative Matrix Factorisation and Improved- RGB Model [J]. Electronics Letters, 2010, 46(20): 1399-1401.
  • 9Yokoya N, Yairi T, Iwasaki A. Coupled Nonnegative Matrix Factorization Unmixing for Hyperspectral and Multispectral Data Fusion [J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(2) : 528-537.
  • 10Zhou F, Bai X, Xing M, et al. Analysis for Wide-angle Radar Imaging [J]. IET Radar, Sonar and Navigation, 2011, 5(4) : 449-457.

二级参考文献35

  • 1申丽岩,方滨,沈毅.基于负熵极大的独立分量分析方法[J].中北大学学报(自然科学版),2005,26(6):396-399. 被引量:14
  • 2Saito N,Larson B M,Benichou B.Sparsity vs Statistical Independence from a Best-basis Viewpoint[C] //Proc SPIE Wavelet Applications in Signal and Image Processing Ⅷ.USA:SPIE,2000(4119):474-486.
  • 3Lee D D,Seung H S.Learning the Parts of Objects by Non-negative Matrix Factorization[J].Nature,1999(401):788-791.
  • 4Cichocki A,Zdunek R.Multilayer Nonnegative Matrix Factorization Using Projected Gradient Approaches[J].International Journal of Neural Systems,2007,7(6):431-446.
  • 5Cichocki A,Zdunek R.Multilayer Nonnegative Matrix Factorization[J].Electronics Letters,2006,42(16):947-948.
  • 6Cichocki A,Zdunek R.Regularized Alternating Least Squares Algorithms for Non-negative Matrix/tensor Factorizations[C] //Lecture Notes In Computer Science.Berlin:Springer,2007(4493):793-802.
  • 7Zdunek R,Cichocki A.Nonnegative Matrix Factorization with Constrained Second-order Optimization[J].Signal Processing,2007(87):1904-1916.
  • 8Zdunek R,Cichocki A.Non-negative Matrix Factorization with Quasi-Newton Optimization[C] //The Eighth International Conference on Artificial Intelligence and Soft Computing (ICAISC).Berlin:Springer,2006:870-879.
  • 9Donoho D L.Compressed Sensing[J].IEEE Trans on Inform Theory,2006(52):1289-1306.
  • 10Loris I.On the Performance of Algorithms for the Minimization of L1-penalized Functionals[J].Inverse Problems,2009,25(3):035008.

共引文献8

同被引文献9

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部