期刊文献+

融合Burg谱估计与信号变化率测度的语音端点检测 被引量:5

Robust voice endpoint detection fusing Burg spectrum estimate and signal variability
下载PDF
导出
摘要 针对现有基于特征的语音端点检测方法在低信噪比及非平稳噪声下检测性能较低的问题,提出了一种融合Burg谱估计与长时段信号变化率测度(LTSV)的语音端点检测方法.该方法采用表征较长时段语音变化率的LTSV参数,较准确地反映了语音的非平稳程度.与传统基于特征的语音端点检测方法相比,该方法在低信噪比及非平稳噪声情况下的检测性能有了较大提高.并融合Burg谱估计,与传统Welch谱估计方法相比,提高了LTSV参数的区分度,从而进一步提高了检测的准确率.仿真结果表明:采用融合Burg谱估计与LTSV的语音端点检测方法在低信噪比(-10dB)及非平稳噪声情况下,与传统基于特征的语音端点检测方法相比,检测准确率普遍提高了约6%以上,说明该方法在低信噪比及非平稳噪声环境下鲁棒性更好. Voice Endpoint Detection is challenging , especially in nonstationary noise and a low signal-to-noise ratio( SNR) , so this paper proposes a novel Robust Voice Endpoint Detection method fusing Burg spectrum estimate and long-term signal variability ( LTSV ) . This method uses a novel long-term signal variability measure , by which the degree of nonstationarity in various signals can be indicated . Comparison with the traditional Voice Endpoint Detection method based on signal features , this method's detection performance has been greatly improved under the condition of a low signal-to-noise ratio and nonstationary noise . Also , Burg spectrum estimate is proposed , which improves the LTSV parameter discrimination degree , thus further improving the detection accuracy . Simulation results show that in comparison with the standard Voice Endpoint Detection method , the new method's accuracy is generally improved by more than about 6% , which shows that the new method has better robustness in the non-stationary noise and low signal-to-noise ratio environment .
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2014年第3期192-195,220,共5页 Journal of Xidian University
基金 陕西省自然科学基金资助项目(2011JQ8038)
关键词 语音端点检测 信号变化率测度 Burg 谱估计 低信噪比 非平稳性 voice endpoint detection long-term signal variability measure Burg spectrum estimate low signal-to-noise ratio nonstationarity
  • 相关文献

参考文献6

  • 1胡波,肖熙.检测语音端点及基音的概率模型及方法[J].清华大学学报(自然科学版),2013,53(6):749-752. 被引量:4
  • 2李远征,卢朝阳,李静.一种基于多特征融合的视频目标跟踪方法[J].西安电子科技大学学报,2012,39(4):1-6. 被引量:15
  • 3Ghosh P K, Tsiartas A, Narayanan S. Robust Voice Activity Detection Using Long-Term Signal Variability [J]. IEEE Transactions on Audio, Speech and Language Processing, 2011, 19(3) : 601-613.
  • 4Cheng Gong, Zhang Xiongwei, Li Yaobo, et al. Voice Activity Detection Method Based on Gray Correlation Analysis Algorithm [J]. Journal of PLA University of Science and Technology, 2012, 56(7) : 1014-1022.
  • 5Cho N, Kim E K. Enhanced Voice Activity Detection Using Acoustic Event Detection and Classification [J]. IEEE Transactions on Consumer Electronics, 2011, 57(1) : 196-202.
  • 6Chiu Y H B, Raj B, Stern R M. Learning-Based Auditory Encoding for Robust Speech Recognition [J]. IEEE Transactions on Audio, Speech and Language Processing, 2012, 20(3) : 900-914.

二级参考文献26

  • 1Comaniciu D, Ramesh V, Meer P. Kernel-based Object Tracking [J] . IEEE Trans on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-577.
  • 2Zhou S K, Chellappa R, Moghaddam B. Visual Tracking and Recognition Using Appearance-adaptive Models for Particle Filters[J]. IEEE Trans on Image Processing, 2004, 13(11) : 1491-1506.
  • 3Perez P, Vermaak J, Blake A. Data Fusion for Visual Tracking with Particles[J]. Proceedings of the IEEE, 2004, 92(3) : 495-513.
  • 4Valtteri T, Pietikainen M. Multi-object Tracking Using Color, Texture and Motion[C]//Proc of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Chicago: IEEE, 2007: 1-7.
  • 5Birchfield S. Elliptical Head Tracking Using Intensity Gra-dients and Color Histograms [C]//Proc of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Santa: IEEE, 1998: 232-237.
  • 6Ido L, Michael L, Ehud R. Tracking by Affine Kernel Transformations Using Color and Boundary Cues[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2009, 31(1): 164-171.
  • 7Maggio E, Smeraldi F, Cavallaro A. Adaptive Multi-feature Tracking in a Particle Filtering Framework[J]. IEEE Trans on Circuits and Systems for Video Technology, 2007, 17(10) : 1348-1359.
  • 8Wang X, Tang Z M. Modified Particle Filter-based Infrared Pedestrian Tracking[J]. Infrared Physics and Technology, 2010, 53(4): 280-287.
  • 9Oiala T, Pietikainen M, Maenpaa T. Multiresolution Grayscale and Rotation Invariant Texture Classification with Local Binary Patterns[J].IEEE Trans on Pattern Analysis and Machine Intelligence, 2002, 24(7) : 971-987.
  • 10Fisher R. Caviar Test Case Scenarios[DB/OL]. [2011-09-15]. http://homepaes, inf. ed. ac. uk/rbI/CAVIARDATA1/.

共引文献17

同被引文献28

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部