期刊文献+

C^3连续的七次PH样条闭曲线插值 被引量:2

C^3 spline interpolation by pythagorean hodograph closed curves of degree seven
下载PDF
导出
摘要 针对C3连续的七次PH样条闭曲线的构造问题,提出一种复数域内的七次PH样条曲线的新的计算方法.利用七次PH样条曲线的特殊性质以及各段插值曲线之间的C3连续性,通过在复平面内构造满足平方性质的七次PH样条插值曲线,将C3连续的七次PH样条闭曲线的构造问题转变为复数域内的二次复方程组的求解问题.考虑到二次复方程组的解不具有唯一性,提出变步长的同伦算法.通过动态地调整同伦步长的大小,可以得到二次复方程组的所有解.结果表明,该算法不仅克服传统的同伦算法中解的丢失问题,而且得到所有满足条件的C3连续的七次PH样条闭曲线. A novel method, based on the expression of PH spline curve of degree seven within complex field, was presented in order to construct the C^3 spline interpolation by PH closed curves of degree seven. Due to the particular properties of PH curves of degree seven and the C^3 continuity of interpolation curves, the problem of constructing interpolated spline curve was transformed into finding the solution of quadratic equations related with complex variables, by constructing PH spline curves of degree seven which satisfied perfect square expression within complex field. Considering that the solution of quadratic equations was not unique, an adaptive homotopy method was proposed. By modifying the homotopy step dynamically, all solutions of quadratic equations were obtained. The simulation results showed that this algorithm not only overcame the loss of solutions in traditional homotopy method, but also obtained all C^3 spline curves by PH closed curves of degree seven satisfying the given conditions.
作者 杨平 汪国昭
机构地区 浙江大学数学系
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2014年第5期934-941,共8页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(60933008 61272300)
关键词 样条插值 同伦算法 闭曲线 spline interpolation homotopy method closed curve
  • 相关文献

参考文献13

  • 1FAROUKI R T, SAKKALIS T. Pythagorean hodo-graphs [J]. IBM Journal of Research and Development, 1990, 34(5) :736 - 752.
  • 2WANG Guo-zhao, FANG Lin-cong. On control polygon of quartic pythagorean hodograph curves [J]. Computer Aided Geometric Design, 2009, 26(9) :1006 - 1015.
  • 3FAROUKI R T, NEFF C A. Hermite interpolation by pythagorean hodograph quintics [J]. Mathematics of Computation, 1995, 64(212): 1589-1609.
  • 4陈国栋,王国瑾.三次PH曲线偶的C^1 Hermite插值[J].计算机研究与发展,2002,39(1):110-113. 被引量:7
  • 5GASPER J, JERNEJ K, MAP, JETA K, et al. On inter- polation by planar cubic G2 pythagorean-hodograph spline curves [J]. Mathematics of Computation, 2010, 79(269) : 305 - 326.
  • 6JUTTLER B. Hermite interpolation by pythagorean hodograph curves of degree seven [J]. Mathematics of Computation, 2001, 70(235) : 1089 - 1111.
  • 7FAROUKI R T. Pythagorean-hodograph curves: algebra and geometry inseparable[M]. Berlin: Springer-Verlag, 2008:555 - 594.
  • 8MORGAN A, SOMMESE A. Computing all solutions to polynomial systems using homotopy continuation [J]. Applied Mathematics and Computation, 1987, 24 ( 2 ) : 115 - 138.
  • 9WALTER Z. A simple homotopy method for determi- ning all isolated solutions to polynomial systems[J]. Mathematics of Computation, 1988, 50 (181) : 167 - 177.
  • 10MORGAN A, SOMMESE A. A homotopy for solving general polynomial systems that respect m-homogene- ous structures [J]. Applied Mathematics and Computa- tion,1987, 24(2) :101 - 113.

二级参考文献7

  • 1R T Farouki, T Sakkalis.Pythagorean hodographs. IBM Journal of Research and Development, 1990, 34(5): 736~752
  • 2R T Farouki, S Shah. Real-time CNC interpolators for Pythagorean hodograph.Computer Aided Geometric Design, 1996, 13(7): 583~600
  • 3R T Farouki, T Sakkalis. Pythagorean hodographs space curves. Advances inComputational Mathematics, 1994, 2(1): 41~66
  • 4R T Farouki. The Conformal map z |→ z2 of hodograph plane. Computer AidedGeometric Design, 1994, 11(4): 363~390
  • 5R T Farouki. Pythagorean-hodograph curves in practical use. In: Barnhill R E ed.Geometry Processing for Design and Manufacturing. Philadelphia, PA: SIAM, 1992. 3~33
  • 6R T Farouki, C A Neff. Hermite interpolation by Pythagorean hodograph quintics.Mathematics of Computation, 1995, 64(212): 1589~1609
  • 7D S Meek, D J Walton. Geometric Hermite interpolation with Tschirnhausen cubics.Journal of Computational and Applied Mathematics, 1997, 81(2): 299~309

共引文献6

同被引文献41

  • 1AHN Y J. Approximation of conic section by curvature continuous quartic Bezier curves [J]. Computers and Mathe- matics with Applications, 2010,60(7):1986 - 1993.
  • 2FANG L. G3 approximation of conic sections by quintic polynomial curves [J]. Computer Aided Geometric De- sign,1999, 16(8):755-766.
  • 3FLOATER M. High-order approximation of conic see tions by quadratic splines [J]. Computer Aided Geomet- ric Design,1995, 12(6) : 617 - 637.
  • 4FLOATER M. An O(h2n) Hermite approximation for conic sections [J]. Computer Aided Geometric Design, 1997,14(2): 135-151.
  • 5KIM S H, AHN Y J. An approximation of circle arcs by quartic Bezier curves [J]. Computer-Aided Design, 2007, 39(6): 490-493.
  • 6AHN Y J. Helix approximations with conic and quad- ratic Bezier curves [J]. Computer Aided Geometric De- sign, 2005, 22(6): 551-565.
  • 7FAROUKI R T. The conformal map z--z2 of the hodo graph plane [J]. Computer Aided Geometric Design, 1994, 11(4): 363-390.
  • 8LI Y J, DENG C Y. 2012. C-shaped C2 Hermite inter- polation with circular precision based on cubic PH curve interpolation [ J ]. Computer-Aided Design, 2012: 44(11), 1056-1061.
  • 9MEEK D S, WALTON D J. Geometric Hermite inter- polation with Tschirnhausen cuhics [J]. Journal of Com- putational and Applied Mathematics, 1997, 81 ( 2 ): 299 - 309.
  • 10BYRTUS M, BASTL B. G1 Hermite interpolation by PH cubies revisited [J]. Computer Aided Geometric De- sign, 201(3, 27(8): 622-630.

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部