期刊文献+

光谱分析中Elastic Net变量选择与降维方法 被引量:4

Spectral wavelength selection and dimension reduction using Elastic Net in spectroscopy analysis
下载PDF
导出
摘要 在利用红外光谱进行多组分混合气体定量分析建模中,须根据各目标气体成分的光谱特点进行光谱维数降维和特征变量选择。以甲烷、乙烷、丙烷、异丁烷、正丁烷、异戊烷和正戊烷等7种气体为分析目标,采用最小绝对收缩和选择算子(LASSO)与弹性网络(ElasticNet)方法进行目标气体数据预处理。针对LASSO和Elastic Net方法参数优化选择的问题,采用均方误差和预测偏差最小两个准则进行参数的优化选取。对4cm-1的实测光谱数据,采用LASSO和ElasticNet方法分别在0.0019和0.0021均方误差条件下使得维度从2542维分别降为2维和3维,LASSO的交叉灵敏度最大和最小为10.2718%和1.4205%,ElasticNet分别为5.4945%和0.7493%。结果表明:Elastic Net在用于光谱定量分析的数据预处理中具有一定的优势,为准确建立定量分析模型奠定了基础。 In the use of Fourier transform infrared spectroscopy to build the multi-component gases quantitative analysis model, it is necessary to reduce the dimensions and select characteristics wavelength according to the target gas spectral. Through the regularization algorithm analysis, least absolute shrinkage and selection operator (LASSO) and Elastic Net method were used to do these for seven kinds of mixed gases of methane, ethane, propane, iso-butane, n-butane, iso-pentane and n-pentane. The minimum mean square error (MSE) and prediction deviation were used as the criteria to select LASSO and Elastic Net parameters. Finally, the resolution of 4cm-1 measured spectral data was analyzed. The dimension of spectra were reduced from 2 542 d to 2d and 3d respectively by using LASSO and Elastic Net method under the condition of the MSE of 0.001 9 and 0.002 1. The cross sensitivity of maximum and minimum were 10.271 8% and 1.420 5% by LASSO method. The cross sensitivity of maximum and minimum were 5.494 5% and 0.749 3% by Elastic Net. Results show that the Elastic Net method was better in the characteristic variable selection and the spectral dimension reduction for gas spectral quantitative analysis, and it was foundation to establish the accurate quantitative analysis model.
出处 《红外与激光工程》 EI CSCD 北大核心 2014年第6期1977-1981,共5页 Infrared and Laser Engineering
基金 国家重大科学仪器设备开发专项(2012YQ240127) 国家自然科学基金(51277144) 电力设备电气绝缘国家重点实验室基金(EIPE11307)
关键词 气体红外光谱定量分析 正则化算法 特征波长选择 LASSO ELASTIC NET gases infrared spectroscopy quantitative analysis regularization algorithm characteristicwavelength selection LASSO Elastic Net
  • 相关文献

参考文献12

  • 1Materazzi S, Vecchio S. Recent applications of evolved gas anal ysis by infrared spectroscopy (IR-EGA) [J]. Applied Spectroscopy Reviews, 2013, 48(8): 654-689.
  • 2Sepman A V, den Blanken R, Schepers R, et al. Quantitative fourier transform infrared diagnostics of the gas-phase composition using the HITRAN database and the equivalent width of the spectral features [J]. Appl Speetrosc, 2009, 63(11): 1211-1222.
  • 3许小京,黄威.光谱成像技术在物证鉴定领域的应用[J].红外与激光工程,2012,41(12):3280-3284. 被引量:11
  • 4Kalivas J H. Multivariate calibration, an overview [J]. Analytical Letters, 2005, 38(14): 2259-2279.
  • 5Kunz M R, Ottaway J, Kalivas J H, et al. Impact of standardization sample design on Tikhonov regularization variants for spectroscopic calibration maintenance and transfer [J]. Journal of Chemometries, 2010, 24(3-4SI): 218-229.
  • 6Zeng T, Wen Z, Wen Z, et al. Weighted fusion of multiple models for wavelength selection[J]. Appl Spectrosc, 2013, 67 (7): 718-723.
  • 7Zou H, Hastie T. Regularization and variable selection via the elastic net[J]. Journal of the Royal Statistical Society Series B-statistical Methodology, 2005, 67(Part 2): 301-320.
  • 8汤晓君,张蕾,王尔珍,李者不,孟永鹏,刘君华.一种改进型多组分气体的Tikhonov正则化特征光谱提取方法[J].光谱学与光谱分析,2012,32(10):2730-2734. 被引量:5
  • 9王高峰,赵毅强,杨栋.1024元长线列红外探测器的数据采集技术[J].红外与激光工程,2012,41(8):1990-1994. 被引量:2
  • 10Friedman J H, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent [J]. Journal of Statistical Software, 2010, 33(1): 1-22.

二级参考文献32

  • 1Sanjay Krishna. The infrared retina [J]. Applied Physics, 2009, 42: 1-6.
  • 2Hiroshi Sugiyama, Jun Koshoubu, Seiichi Kashiwabara, et al. Time-resolved step-scan infrared imaging system utilizing a linear array detector[J]. Appl Spectrosc, 2008, 62(1): 7-23.
  • 3Hou Liwei, Xie Wei, Chen Fansheng, et al. Image restoration of infrared focal plane array[C]//IASP, 2010: 296-299.
  • 4McClelland J R, Hughes S, Modat M, et al. Inter-fraction variations in respiratory motion models [J]. Physics in Medicine and Biology, 2011, 56(1): 251-272.
  • 5Goyal P. Studying the performance parameters on real infrared image/data and evaluation by application of the NUC algorithm[C]//Control and Robotics, 2010: 65-70.
  • 6HAO Hui-min, QIAO Cong-ming, TANG Xiao-jun, et al(郝惠敏,乔聪明,汤晓君,等).红外与毫米波学报,2009,28(2):115.
  • 7LI Xiao-guang, GUAN Ze-hua, TIAN Hong-ru, et al(李晓光,关泽华,田鸿儒,等).李时珍国医国药,2009,20(10):2612.
  • 8Stout F, Kalivas J H, HESBerger K. Applied Spectroscopy, 2007, 61(1): 85.
  • 9Kalivas J H, Siano G S, Andries E, et al. Applied Spectroscopy, 2009, 63.. 800.
  • 10TANG Xiao-jun, HAO Hui-min, LI Yu-jun, et al(汤晓君,郝惠敏,李玉军,等).光谱学与光谱分析,2011,31(6):1673.

共引文献25

同被引文献65

引证文献4

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部