期刊文献+

快速平滑点特征轨迹电子稳像 被引量:4

Fast smoothing point-feature trajectories for digital image stabilization
下载PDF
导出
摘要 为了提高机载成像系统输出视频的图像质量,提出了一种快速平滑点特征轨迹的稳像算法。以消除全局运动估计的帧间匹配累积全局运动、实现长时快速稳像为目的,建立有别于传统实时稳像模式的系统框架。首先采用SURF算法从原始的抖动视频中提取不稳定的特征点;其次利用Delaunay三角剖分算法判断特征点的邻接性,生成点特征轨迹;再次采用Kalman滤波器对不稳视频中得到的点特征轨迹进行滤波处理,得到平滑的点特征轨迹;最后由原始点特征轨迹和平滑点特征轨迹估算出直接需要补偿的全局运动矢量。实验结果表明:该方法不仅能够实时处理失稳航摄视频,有效改善机载成像系统的图像质量,而且能够估计出相互独立的帧间全局运动矢量,可以应用于需要长时间稳像的场合。 To improve the video's image quality of airborne imaging systems, we proposed a real-time image stabilization system, based on fast smoothing point-feature trajectories. In this paper, a system framework was established to eliminate the accumulative errors between frames in global motion estimation and achieve fast and long-time video stabilization. This framework was different from the traditional real-time video stabilization. Firstly, an improved SURF algorithm was introduced to extract unstable feature points from original shaky video. Secondly, we determined the adjacency of these feature points, generated point feature trajectories with Delaunay triangulation algorithm and smoothed them with Kalman filtering. Then, we could estimate the global motion vectors which directly needed to be compensated from the original point-feature trajectories and the smoothing point-feature trajectories. The experiment results indicate that the proposed method can be used to stabilize unstable aerial video in real time. Also, it can effectively improve the image quality of the airborne imaging systems and estimate global motion vectors between independent frames. So it can be used in long-time image stabilization.
出处 《红外与激光工程》 EI CSCD 北大核心 2014年第6期1988-1993,共6页 Infrared and Laser Engineering
基金 国家973计划(2009CB72400603B) 国家863计划(2008AA121803)
关键词 电子稳像 点特征轨迹 全局运动估计 KALMAN滤波 SURF算法 digital image stabilization point-feature trajectories global motion estimation Kalman filtering SURF algorithm
  • 相关文献

参考文献12

  • 1孙辉,张葆,刘晶红,李仕,李志强.航空光电成像电子稳像技术[J].光学精密工程,2007,15(8):1280-1286. 被引量:16
  • 2Matsushita Y, Ofek E, Ge W, et al. Full-frame video stabilization with motion inpainting [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(7): 1150-1163.
  • 3王志民,徐晓刚.电子稳像技术综述[J].中国图象图形学报,2010,15(3):470-480. 被引量:50
  • 4张坤,许廷发,王平,冯亮.高精度实时全帧频SURF电子稳像方法[J].光学精密工程,2011,19(8):1964-1972. 被引量:23
  • 5王洪,嵇晓强,戴明,韩松伟.一种改进的快速鲁棒性特征匹配算法[J].红外与激光工程,2012,41(3):811-817. 被引量:9
  • 6Huang K Y, Tsai Y M, Tsai C C, et al. Video stabilization for vehicular applications using SURF-Like descfiptior and KD-Tree [C]//IEEE 17th International Conference on Image Processing, 2010: 3517-3520.
  • 7Battiato S, Gallo G, Puglisi G, et al. Sift features tracking for video stabilizafion[C]//Intemational Conference on Image Analysis and Processing, 2007: 825-830.
  • 8Yeon G R, Myung J C. Robust online digital image stabilization based on point -feature trajectory without accumulative global motion estimation [J]. IEEE Signal Processing Letters, 2012, 19(4): 223-226.
  • 9Wang C, Kim J H, Byun K Y, et al. Robust digital image stabilization using the kalman filter [J]. IEEE Transactions on Consumer Electronics, 2009, 55(1): 6-14.
  • 10David L. Video stabilization and target localization using fature tracking with small UAV video[D]. America: Brigham Young University, 2006.

二级参考文献79

共引文献88

同被引文献37

引证文献4

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部