摘要
为求解对称半正定矩阵低秩逼近问题,基于矩阵的满秩分解和非负矩阵分解算法,构造了一种新的乘性迭代算法,并给出了新算法的收敛性定理。数值实验表明,与Cadzow算法相比,新算法更可行高效。
In order to solve the low rank approximation of the symmetric positive semi-definite matrix,a new multiplicative iterative algorithm is constructed based on the full rank factorization of the matrix and the algorithm for the non-negative matrix factorization,the convergence theorem for the proposed algorithm is given.Numerical experiments show that com-pared with the Cadzow algorithm,the new algorithm is feasible and efficient.
出处
《桂林电子科技大学学报》
2014年第3期239-244,共6页
Journal of Guilin University of Electronic Technology
基金
国家自然科学基金(11101100
11226323
11261014)
广西自然科学基金(2012GXNSFBA053006
2013GXNSFBA019009)
广西信息科学实验中心项目(20130103)
关键词
对称半正定矩阵
低秩逼近
乘性迭代算法
symmetric positive semi-definite matrix
low rank approximation
multiplicative iterative algorithm