期刊文献+

求解对称半正定矩阵低秩逼近的乘性迭代算法 被引量:1

Multiplicative iterative algorithm for the low rank approximation of the symmetric positive semi-definite matrix
下载PDF
导出
摘要 为求解对称半正定矩阵低秩逼近问题,基于矩阵的满秩分解和非负矩阵分解算法,构造了一种新的乘性迭代算法,并给出了新算法的收敛性定理。数值实验表明,与Cadzow算法相比,新算法更可行高效。 In order to solve the low rank approximation of the symmetric positive semi-definite matrix,a new multiplicative iterative algorithm is constructed based on the full rank factorization of the matrix and the algorithm for the non-negative matrix factorization,the convergence theorem for the proposed algorithm is given.Numerical experiments show that com-pared with the Cadzow algorithm,the new algorithm is feasible and efficient.
出处 《桂林电子科技大学学报》 2014年第3期239-244,共6页 Journal of Guilin University of Electronic Technology
基金 国家自然科学基金(11101100 11226323 11261014) 广西自然科学基金(2012GXNSFBA053006 2013GXNSFBA019009) 广西信息科学实验中心项目(20130103)
关键词 对称半正定矩阵 低秩逼近 乘性迭代算法 symmetric positive semi-definite matrix low rank approximation multiplicative iterative algorithm
  • 相关文献

参考文献18

  • 1Bach F R,Jordan M I. Kernel independent component analysis[J].Journal of Machine Learning Research,2002,(07):1-48.
  • 2Boman L,Koch H,Merás A. Method specific Cholesky decomposition:coulomb and exchange energies[J].Journal of Chemical Physics,2008,(13):107-134.
  • 3Gill P E,Murray W,Wright M H. Practical Optimization[M].London:Academic Press,1981.
  • 4Parlett B. Progress in numerical analysis[J].SIAM Review,1978,(03):443-456.
  • 5Gillard J W,Zhigljavsky A A. Analysis of structured low rank approximation as an optimization problem[J].Informatica,2011,(04):489-505.
  • 6Chu M T,Funderlic R E,Plemmons R J. Structured low rank approximation[J].Linear Algebra and its Applications,2003,(01):157-172.
  • 7Park H,Zhang Lei,Rosen J B. Low rank approximation of a Hankel matrix by structured total least norm[J].BIT Numerical Mathematics,1999,(04):757-779.
  • 8Li Bingyu,Yang Zhengfeng,Zhi Lihong. Fast low rank approximation of a Sylvester matrix by structured total least norm [J].Japan Society for Symbolic and Algebraic Computation,2005,(3-4):165-174.
  • 9Winkler J R,Allan J D. Structured low rank approximations of the Sylvester resultant matrix for approximation GCDs of Bernstein basis polynomials[J].Electronic Transactions on Numerical Analysis,2008.141-155.
  • 10Winkler J R,Allan J D. Structured total least norm and approximate GCDs of inexact polynomials[J].Journal of Computational and Applied Mathematics,2008,(01):1-13.

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部