期刊文献+

空间平滑和盖氏半径变换的宽带相干信源数估计 被引量:2

Estimation of wideband coherent source number based on spatial smoothing and transformed Gerschgorin radii
原文传递
导出
摘要 采用空间平滑处理和不同信源数估计准则进行宽带相干信源数估计。该方法针对宽带相干信号,不需要聚焦处理,直接对宽带信号阵列采样输出分段并进行快速傅立叶变换(fast Fourier transform,FFT),得到不同频点处的窄带采样协方差矩阵,然后采用空间平滑处理技术进行解相干处理,接着利用信源估计准则进行信源数估计,对每个频点处的结果进行加权处理得到宽带信源数目。仿真结果表明,通过对信息论准则、基于盖氏半径的似然准则、盖氏圆估计准则的性能的对比,进而得到了一种在色噪声下估计宽带相干信源数的方法。 In this paper, spatial smoothing processing and several different sources number estimation criterions are adopted to estimate wideband coherent sources number. The method aims to wideband coherent sources, in which the focusing process is not needed. Firstly, the array sample outputs are divided into some subsections and are transformed into frequency domain data by FFT, then narrowband sampling covarianee matrix on each frequency point can be obtained. Further, spatial smoothing technique is adopted to de-correlate coherent sources, and different criterions are adopted to estimate the sources number, then the number of wideband coherent sources can be determined by weighted the processing results of each frequency point. Finally, the simulation results show that, the performance of the information theory criterion, Gerschgorin likelihood estimators (GLE) criterion, Gerschgorin disk estimator (GDE) criterion are contrasted through computer simulations, and a method is got to estimate wideband coherence source number under the condition of color noise environment.
出处 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2014年第3期346-351,共6页 Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
基金 国家高技术研究发展计划(863计划)重点项目(2009AA011302) 重庆市教委科研项目(K1090513) 重庆邮电大学研究生教育创新计划重点项目(Y201019)~~
关键词 信源数估计 宽带相干信源 盖氏圆估计(GDE)准则 信息论准则 空间平滑 source number estimation wideband coherent source Gerschgorin disk estimator(GDE) criterion informationtheory criterion spatial smoothing
  • 相关文献

参考文献7

二级参考文献78

共引文献48

同被引文献14

  • 1H. A. A new look at the statistical model identification [J] . IEEETrans on Automatic Control, 1974,19 (6): 716 - 723.
  • 2G. S. Estimation the dimension of a model [J] . The Annals ofStatistics, 1978,6 (2): 461 - 464.
  • 3Rissanen J. Modeling by shortest data description [J] . Automati-ca, 1978, 14 (465 - 471.
  • 4TWH,FYJ,KCF. Source number estimator using gerschgorindisks [J] . IEEE Trans on Acoustics Speech Signal Processing,1994, 4 (4): 261 - 264.
  • 5Hong H, Liang M. Separation of fault features from a single -channel mechanical signal mixture using wavelet decomposition[J] . Mechanical Systems and Signal Processing, 2007,21 (2025-2040.
  • 6Gao B, Woo W L,Dlay S S. Single -Channel Source SeparationUsing EMD- Subband Variable Regularized Sparse Features [J].IEEE Transactions on Audio, Speech, and Language Processing,2011,19 (4): 961 - 976.
  • 7谢纪岭,司锡才.基于协方差矩阵对角加载的信源数估计方法[J].系统工程与电子技术,2008,30(1):46-49. 被引量:29
  • 8彭耿,黄知涛,姜文利,周一宇.单通道盲信号分离研究进展与展望[J].中国电子科学研究院学报,2009,4(3):268-277. 被引量:25
  • 9司伟建,郭雪妍.基于四阶累积量的信源数估计新方法[J].弹箭与制导学报,2012,32(2):193-196. 被引量:3
  • 10司伟建,林晴晴.基于特征子空间投影的信源数估计方法[J].系统工程与电子技术,2012,34(7):1318-1322. 被引量:8

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部