期刊文献+

改进的支持向量机在情感识别中的应用 被引量:2

Application of improved support vector machine in emotion recognition
下载PDF
导出
摘要 针对传统支持向量机核函数参数σ、惩罚系数γ以及不敏感损失常数ε需要优化的问题,提出模拟退火免疫粒子群算法(SA-IPSO)优化支持向量机(SVM)关键参数σ、γ、ε的方法。并使用BIOPAC MP150对于630名被试者进行了情感激发状态下的心电生理信号采集,构建可靠的情感生理信号数据库,用该算法对其分类,与模拟退火支持向量机(SA-SVM)以及默认参数支持向量机相比,识别率更高,误报率更低,说明该算法在情感识别领域识别效果优于传统支持向量机。 This paper discussed the optimization method about parameters σ, ε, and γ for Support Vector Machine (SVM) and raised a new SVM algorithm which was improved by the Simulated Annealing-Immune Particle Swarm Optimization (SA- IPSO). BIOPAC MP150 was used to test 630 subjects and get their biological signals to build a reliable database. The database was classified by the new algorithm and comparisons were made with SVM and Simulated Annealing-SVM. Results indicate that using this new algorithm, the True Positive Rate (TPR) is higher and the False Positive Rate (FPR) is lower, which means that it has better identifying effect in emotion recogniton.
出处 《计算机应用》 CSCD 北大核心 2014年第A01期117-119,155,共4页 journal of Computer Applications
基金 中央高校基本科研业务费重大项目(XDJK2013A028) 教育部科技攻关重大项目(NKSF07003)
关键词 支持向量机 模拟退火 粒子群优化算法 情感识别 生理信号 Support Vector Machine (SVM) Simulated Annealing (SA) Particle Swarm Optimization (PSO) emotionrecognition physiological signal
  • 相关文献

参考文献12

  • 1AGRAWAL P, LIU C, SARKAR N. Interaction between human and robot: an affect-inspired approach [ J]. Interaction Studies, 2008, 9(2): 230-257.
  • 2KULIC D, CROFT E A . Affective state estimation for human-robot interaction [J]. IEEE Transactions on Robotics, 2007,23(5): 991 - 1000.
  • 3PICARD R W, VYZAS E, HEALEY J. Toward machine emotional intelligence: Analysis of affective physiological state[ J]. IEEE Trans- actions Pattern Analysis and Machine Intelligence, 2001, 23 (10) : 1175 - 1191.
  • 4ZENG Z H, PANTIC M, ROISMAN G I, et al. A survey of affect recognition methods: audio, visual, and spontaneous expressions [J]. IEEE Transactions on Pattern Analysis and Machine Intelli- gence, 2009, 31(1): 39-58.
  • 5PICARD R W. Affective computing[ M]. Cambridge: MIT Press, 1997.
  • 6LIN S-W, LEE Z-J, CHEN S-C, et al. Parameter determination of support vector machine and feature selection using simulated annea- ling approach [ J]. Applied Soft Computing, 2008, 8(4):1505 - 1512.
  • 7SAMADZADEGAN F, HASANI H, SCHENK T. Simultaneous fea- ture selection and SVM parameter determination in classification of hypcrspcctra] imagery using ant colony optimization[ J]. Canadian Journal of Remote Sensing, 2012, 38(2) : 139 - 156.
  • 8单建魁,赵雪峰.基于模拟退火支持向量机的入侵检测系统[J].计算机工程与设计,2009,30(21):4851-4854. 被引量:7
  • 9胡玉霞,张红涛.基于模拟退火算法-支持向量机的储粮害虫识别分类[J].农业机械学报,2008,39(9):108-111. 被引量:33
  • 10温万慧.基于生理信号的情感识别方法研究[D].重庆:西南大学,2010.

二级参考文献34

共引文献59

同被引文献30

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部