期刊文献+

基于量子粒子群优化反向传播神经网络的手势识别 被引量:6

Gesture recognition based on quantum-behaved particle swarm optimization of back propagation neural network
下载PDF
导出
摘要 反向传播(BP)神经网络算法在手势识别中得到了广泛的应用。为了对算法进行改进以提高BP神经网络的学习效率,提出一种基于量子粒子群优化BP神经网络的手势识别训练算法。在手势识别过程中,首先采用量子粒子群算法(QPSO)训练BP神经网络,获得优化的BP神经网络权值和阈值;合理地定义并提取BP神经网络的手势识别样本;最后采用训练过的BP神经网络对动态手势进行识别。该算法简单,不依赖初始值,并且收敛速度快,尤其对于高维复杂问题,能保证收敛到最优解。实验结果表明,该算法平均训练时间达到5.15 s,识别正确率达到95.1%,效果明显优于一般的BP神经网络算法。 Back Propagation (BP) neural network algorithm is widely used in hand gesture recognition. In order to improve learning efficiency of the BP neural network, the authors proposed a hand gesture recognition algorithm based on Quantum-behaved Particle Swarm Optimization (QPSO) of BP neural network. In the process of gesture recognition, first, the QPSO algorithm was used to train the BP neural network and get the weights and thresholds of the optimized BP neural network. Experiment program defined and extracted gesture recognition samples reasonably for the BP neural network. Finally, the dynamic gestures were recognized by the trained BP neural network. The proposed algorithm is simple, does not depend on the initial value, and has a fast convergence speed, especially for high dimensional complex problems, it can guarantee the convergence to the optimal solution. The experimental results indicate that the average training time of the new algorithm can reach 5.15 seconds, the correct recognition rate of the new algorithm can reach 95.1%. The new algorithm has better effects than the general BP neural network algorithm.
作者 杨志奇 孙罡
出处 《计算机应用》 CSCD 北大核心 2014年第A01期137-140,共4页 journal of Computer Applications
关键词 反向传播神经网络 量子粒子群算法 手势识别 权值 阈值 Back Propagation (BP) neural network Quantum-behaved Particle Swarm Optimization (QPSO) gesturerecognition weight threshold
  • 相关文献

参考文献11

二级参考文献98

共引文献510

同被引文献53

  • 1王成儒,吴娅辉.旋转不变纹理特征用于两级图像检索[J].光电工程,2005,32(3):70-72. 被引量:10
  • 2杨淑娥,黄礼.基于BP神经网络的上市公司财务预警模型[J].系统工程理论与实践,2005,25(1):12-18. 被引量:202
  • 3江立,阮秋琦.基于神经网络的手势识别技术研究[J].北京交通大学学报,2006,30(5):32-36. 被引量:12
  • 4闫华,魏平,肖先赐.基于Bernstein多项式的自适应混沌时间序列预测算法[J].物理学报,2007,56(9):5111-5118. 被引量:18
  • 5WANG L, ZOU F, HEI X, et al. A hybridization of teaching-learn- ing-based optimization and differential evolution for chaotic time se- ries prediction [ J]. Neural Computing and Applications, 2014, 25 (6) : 1407 - 1422.
  • 6FAIEGHI M, KUNTANAPREEDA S, DELAVARI H, et al. LMI- based stabilization of a class of fractional-order ehaotie systems [ J]. Nonlinear Dynamics, 2013, 72(1/2): 301-309.
  • 7PANDEY A, THAPA K B, PRASAD R, et al. General regression neural network and radial basis neural network for the estimation of crop variables of lady finger [ J]. Journal of the Indian Society of Re- mote Sensing, 2012, 40(4): 709-715.
  • 8BANSAL A, CHEN T, ZHONG S. Privacy preserving back-propa- gation neural network learning over arbitrarily partitioned data [ J]. Neural Computing and Applications, 2011, 20(1) : 143 - 150.
  • 9MASOUMI H R F, BASRI M, KASSIM A, et al. Comparison of es- timation capabilities of the artificial neural network with the wavelet neural network in lipase-catalyzed synthesis of triethanolamine-based esterquats cationic surfactant [ J]. Journal of Surfactants and Deter- gents, 2014, 17(2): 287-294.
  • 10MUTHUKRISHNAN S, PURl M, LEFEVRE C. Support Vector Machine (SVM) based multiclaass prediction with basic statistical a- nalysis of plasminogen activators [ J]. BMC Research Notes, 2014, 7(63): 1 -10.

引证文献6

二级引证文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部