摘要
主要结合武警部队的非致命性武器(催泪弹)的一些性能指标(如:弹重、烟雾最小刺激浓度、刺激剂的空气密度、刺激扩散半径,武器基数),针对不同事件规模,使用BP神经网络分析评估预测其在处突防恐中的武器使用基数的最小量。
BP neural network which is a applicative intelligent algorithm, was ofen used in approximation of function and analysis, estimate of data. This paper that mainly base on some of the illethal weapon's function and quota of CAPF ( Such as ammunition mass, minimum smoke stimulant concentration, smoke density in the air, smoke diffusing radiu, weapon cardinal), apply BP neural network to estimate the minimum weapon cardinal during the time dealing with the accidents and cases, depending on different scale.
出处
《计算机应用》
CSCD
北大核心
2014年第A01期356-357,360,共3页
journal of Computer Applications
关键词
BP神经网络
武器
基数
评估
Back-Propogation Neural Network (BPNN)
weapon
cardinal
estimation