摘要
The removal of 17β-estradiol (E2) in laccase catalyzed oxidative coupling processes was systematically studied in this work. We focused on the influence of pH and natural organic matter (NOM) on the performance of the enzymatic treatment processes. It was found that the optimal pH for E2 removal was between 4 and 6. The removal of E2 was slightly inhibited in the presence of NOM. Enzymatic transformation of E2 was second-order in kinetics with first-order to both the concentrations of the enzyme and contaminant. Mass spectrum (MS) analysis suggested that coupling products were formed through radical-radical coupling mechanism. The results of this study demonstrated that laccase catalyzed oxidative coupling process could potentially serve as a treatment strategy to control steroid estrogens.
The removal of 17β-estradiol (E2) in laccase catalyzed oxidative coupling processes was systematically studied in this work. We focused on the influence of pH and natural organic matter (NOM) on the performance of the enzymatic treatment processes. It was found that the optimal pH for E2 removal was between 4 and 6. The removal of E2 was slightly inhibited in the presence of NOM. Enzymatic transformation of E2 was second-order in kinetics with first-order to both the concentrations of the enzyme and contaminant. Mass spectrum (MS) analysis suggested that coupling products were formed through radical-radical coupling mechanism. The results of this study demonstrated that laccase catalyzed oxidative coupling process could potentially serve as a treatment strategy to control steroid estrogens.
基金
This research was funded by the National Natural Science Foundation of China (Grant No. 51178224), Jiangsu Natural Science Foundation (BIC2010443), and the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institute. The content of the paper does not necessarily represent the views of the funding agencies.