期刊文献+

多搜索引擎权重计算及搜索结果排序质量评估 被引量:1

Weight calculation for search engines and quality evaluation for ranking of search results
下载PDF
导出
摘要 搜索引擎在多成员搜索引擎搜索结果的整合过程中,搜索结果的排序在很大程度上决定着元搜索引擎的服务质量。为了实现搜索结果的有效整合,目前技术主要结合查询请求、文档内容、初始排序或(和)赋予搜索成员搜索引擎权重等因素。其中采用赋予搜索引擎权重时,往往根据用户和技术人员经验,主观地进行赋值,不能体现真实的用户搜索偏好。为此,提出了通过挖掘用户搜索及遍历情况,动态地赋予各成员搜索引擎权重的方法。通过用户遍历及点击下载情况,得到了用户搜索遍历与返回结果的匹配度,论证了该方法的可行性和有效性。 In the integration process of search results returned from multi member search engines, the quality of a service meta-search engine is determined by the ranking of search results to a great extent. The current technologies on achieving effective integration of search results mainly rely on combining search queries, document content, the initial sorting infor-mation or(and)endowing the member search engines with weights, and others. The method of endowing engines with weights is objective, often depends on the subjective experience of users, and can’t embody users’search preferences. So, this paper proposes a method to dynamically endow the member search engines with weights based on mining user’s search-ing and navigation habits. It analyzes users’log data on clicking and downloading search results, and gets the matching degrees between search results and users’navigation. The statistic results demonstrate that the methodology is feasible and effective to the ranking of multi engine search results.
作者 李超 谢坤武
出处 《计算机工程与应用》 CSCD 2014年第12期21-25,共5页 Computer Engineering and Applications
基金 国家自然科学基金专项基金(No.61362012) 湖北省自然科学基金(No.2009CDB069) 湖北民族学院科技学院项目(No.K201001)
关键词 搜索引擎 权重计算 排序 质量评估 search engine weight calculation ranking quality evaluation
  • 相关文献

参考文献16

  • 1Franzen K, Karlgren J.Verbosity and interface design[J]. SICS Research Report, 2000,1 ( 1 ) : 1-5.
  • 2Jansen B J, Spink A,Bateman J,et al.Real life informa- tion retrieval: a study of user queries on the Web[J].ACM SIGIR Forum, 1998,32( 1 ) :5-17.
  • 3Wu S,McClean S.Result merging methods in distributed information retrieval with overlapping databases[J].Infor- mation Retrieval, 2007, 10( 3 ) : 297-319.
  • 4Dai H K,Zbao L,Nie Z,et al.Detecting Online Commer- cial Intention(OCI)[C]//Proceedings of the 15th Interna- tional Conference on World Wide Web,2006:829-837.
  • 5Broder A.A taxonomy of web search[J].ACM Sigir Forum, 2002,36(2) :3-10.
  • 6Zhao Chongchong,Zhang Zhiqiang,Xie Xiang.A new key- words method to improve web search[C]//12th IEEE Inter- national Conference on High Performance Computing and Communications.Melbourne, VIC: Institute of Electrical and Electronics Engineers,2010:477-484.
  • 7Haveliwala T H.Topic-sensitive page rank:a context-sen- sitive ranking algorithm for web search[J].IEEE Transac- tions on Knowledge and Data Engineering,2003,15(4): 784-796.
  • 8Wu S,McClean S.Performance prediction of data fusion for information retrieval[J].Information Processing & Man- agement, 2006,42 (4) : 899-915.
  • 9Wu S, McClean S.Improving high accuracy retrieval by eliminating the uneven correlation effect in data fusion[J]. Journal of the American Society for Information Science and Technology,2006,57(14) : 1962-1973.
  • 10Meng Weiyi,Yu C.Building efficient and effective metase- arch engines[J].ACM Computer Surveys, 2002, 34 (1) : 48-89.

同被引文献12

  • 1Franzen K,Karlgren J.Verbosity and interface design[J].SICS Research Report,2000,1(1):1-5.
  • 2Wu S,McC lean S.Result merging methods in distributedinformation retrieval with overlapping databases[J].Information Retrieval,2007,10(3):297-319.
  • 3Dai H K,Zhao L,Nie Z,et al.Detecting Online Commercial Intention(OCI)[C]//Proceedings of the 15th International Conference on World Wide Web.Berlin:Springer Berlin Heidelberg,2006:829-837.
  • 4Broder A.A taxonomy of web search[J].ACM Sigir Forum,2002,36(2):3-10.
  • 5Haveliwala T H.Topic-sensitive page rank:a contextsensitive ranking algorithm for web search[J].IEEE Transactions on Knowledge and Data Engineering,2003,15(4):784-796.
  • 6Wu S,McC lean S.Performance prediction of data fusion for information retrieval[J].Information Processing&Management,2006,42(4):899-915.
  • 7Wu S,McC lean S.Improving high accuracy retrieval by eliminating the uneven correlation effect in data fusion[J].Journal of the American Society for Information Science and Technology,2006,57(14):1962-1973.
  • 8Khare R,Cutting D,Sitaker K,et al.Nutch:a flexible and scalable open-source web search engine[EB/OL].[2013-06-20]http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.105.5978&rank=1.
  • 9Guo F,Liu C,Wang Y M.Efficient multiple-click models in web search[C]//Proceedings of the Second ACM International Conference on Web Search and Data Minin.New York:ACM Inc,2009:124-131.
  • 10Agichtein E,Brill E,Dumais S.Learning user interaction models for predicting web search result preferences[C]//Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.New York:ACM Inc,2006:3-10.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部