期刊文献+

基于SIFT和Daisy相结合的立体匹配算法 被引量:9

Stereo matching algorithm based on combination of SIFT and Daisy descriptor
下载PDF
导出
摘要 立体匹配是计算机视觉领域最活跃的研究课题之一,针对传统SIFT描述符在图像存在多个相似区域时易造成误匹配和Daisy的匹配效率会因200维的描述符而降低的问题,提出一种SIFT和Daisy相结合的立体匹配算法。该方法利用SIFT算法生成关键特征点,利用Daisy描述符自身具有的良好的旋转不变性,对特征点进行描述,利用特征描述符欧氏距离的最近邻匹配和种子区域增长得到视差图。实验结果表明,该方法匹配精度高,速度快,在部分遮挡、视点变化引起的图像变形等问题上有更好的表现。 Stereo matching is one of the most active research subjects in computer vision. Aiming at the problems that tra-ditional SIFT descriptor is subject to mismatch easily when the image has similar areas, and 200-dimensional description reduces the efficiency of Daisy descriptor algorithm, this paper presents a stereo matching algorithm based on the combina-tion of SIFT and Daisy descriptor. The method uses SIFT algorithm to generate feature points, and then describes these feature points by Daisy descriptor for its good rotation invariant, and the disparity map is obtained according to the nearest neighbor matching based on Euclidean distance and seed region growing. Experimental results show this algorithm wins high match-ing accuracy and better performance when there are different levels of image geometric distortion or radiation distortion.
出处 《计算机工程与应用》 CSCD 2014年第12期147-150,165,共5页 Computer Engineering and Applications
基金 中央高校基本科研业务费专项资金资助(No.JUSRP211A35)
关键词 立体匹配 尺度不变特征变换(SIFT) 特征描述符 stereo matching Scale Invariant Feature Transform(SIFT) Daisy feature descriptor
  • 相关文献

参考文献11

  • 1Brown M Z,Burschka D,Hager G D.Advances in com- putational stereo[J].lEEE Trans on Pattern Analysis and Machine Intelligence, 2003.25 ( 8 ).
  • 2Aaron F B,Stephen S I.Large occlusion stereo[J].Interna- tional Jot, rnal of Computer Vision.1999,33(3): 181-200.
  • 3Boykov Y. Veksler O, Zabih R.Fast approximate energy minimization via graph cuts[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2001.23( 11 ).
  • 4Sun J, Zheng N N, Shum H Y.Stereo matching using belief propagation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003,25(7) : 787-800.
  • 5Lowe D G.Distinctive image features from scale-invari- ant keypoints[J].lnternational Journal of Computer Vision, 2004,60(2) :91-110.
  • 6Mikolajczyk K, Schmid C.A performance evaluation of local descriptors[J].IEEE Transactions on Pattern Analy- sis and Machine Intelligence, 2005,27(10) : 1615-1630.
  • 7赵垒,侯振杰.一种改进的SIFT图像配准方法[J].计算机工程,2010,36(12):226-228. 被引量:19
  • 8唐朝伟,肖健,邵艳清,苗光胜.一种改进的SIFT描述子及其性能分析[J].武汉大学学报(信息科学版),2012,37(1):11-16. 被引量:20
  • 9Engin T,Vincent L.A fast local descriptor for dense match- ing[C]//IEEE Conference on Computer Vision and Pat- tern Recognition,2008.
  • 10Engin T, Vincent L, Fua P.DAISY: an efficient dense descriptor applied to wide-baseline stereo[J].IEEE Trans- actions on Pattern Analysis and Machine Intelligence, 2010,32 ( 5 ) : 815-830.

二级参考文献20

  • 1张鹏强,余旭初,韩丽,刘景正.基于直线特征匹配的序列图像自动配准[J].武汉大学学报(信息科学版),2007,32(8):676-679. 被引量:13
  • 2刘进,闫利.图像相关匹配算法的快速实现[J].武汉大学学报(信息科学版),2007,32(8):684-687. 被引量:12
  • 3Kuglin C D,Hines D C.The Phase Correlation Image Alignment Method[C] //Proc.of IEEE Conference on Cybernetics and Society.New York,USA:[s.n.] ,1975.
  • 4David G.Object Recognition from Local Scale-invariant Features[J].International Conference on Computer Vision,1999,9(2):1150-1157.
  • 5Ke Yan,Sukthankar R.PCA-SIFT:A More Distinctive Representation for Local Image Descriptors[C] //Proc.of the Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:[s.n.] ,2004.
  • 6Ganapathy S.Decomposition of Transformation Matrices for Robot Vision[C] //Proc.of the Int'l Conf.on Robotics and Automation.[S.l.] :IEEE Press,1984.
  • 7Stein A. Hehert M. Incorporating Background In variance Into Feature-based Object Recognition[C]IEEE Workshops on Application of Computer Vi sion, Breckenridge. CO.USA, 2005.
  • 8Lowe l) G. Distinctive Image Features from Scale Invariant Keypoints [ J]. International Journal of Computer Vision,2004,2 (60) :91-110.
  • 9Yang Ke, Sukthankar R. PCA SIFT: A More Dis tinctive Representation for l.ocal Image Descriptors [C]. The 1EEE Conference on Compuler Vision and Pallern Recognition, Washinon, DC, USA, 2004.
  • 10Wang Wei, Hong Jun,Tang Yiping. Image Matching for Geomorphic Measurement Based on SIFT and RANSAC Methods [C]. The 2008 International Conference on Computer Science and Software Engi neering,Wuhan, China, 2008.

共引文献37

同被引文献110

引证文献9

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部