期刊文献+

固定时间轨道拦截的制导方法研究 被引量:4

Guidance for time-fixed orbital interception
原文传递
导出
摘要 针对摄动影响下的固定时间轨道拦截问题,提出了一种基于虚拟拦截点的导引算法。通过对虚拟拦截点的修正,将摄动下的轨道拦截问题转化为二体假设下的Lambert轨道拦截问题进行求解,使摄动下的拦截问题得到简化。该方法计算过程简单,便于编程实现。仿真结果表明该方法合理有效,并能达到较高的精度。 A guidance law with virtual interception point was presented for the fixed-time orbital intercep-tion problem under the effect of perturbation. By introducing a virtual target interception point, it wasconvenient to make a fixed-time orbital interception in space environment into a quite simple Lambertproblem which is based on the two-body theory. Construction of this algorithm is rather simple and it'squite convenient to compile a CODEC. Simulation results show that the algorithm is efficient and achievea high precision.
出处 《飞行力学》 CSCD 北大核心 2014年第3期266-269,共4页 Flight Dynamics
基金 国家863计划项目资助(2012AA2013)
关键词 轨道拦截 Lambert制导 虚拟拦截点 超几何函数 牛顿迭代 orbital interception Lambert guidance virtual interception point bypergeometric function Newton iteration
  • 相关文献

参考文献7

  • 1Tewari A. Advanced control of aircraft, spacecraft and rockets [ M ]. Wiley, 2011 : 297-298.
  • 2贾沛然,汤国建.运用速度增益制导实现对目标卫星的拦截[J].国防科技大学学报,1992,14(2):72-77. 被引量:6
  • 3Bate R R, Mueller D D, White J E. Fundamentals of as- trodynamics [ M ]. Dover: Courier Dover Publications, 1971:203-236.
  • 4Escobal P R. Methods of orbit determination [ M ]. R. E. Krieger Pub. Co. , 1976 : 130-150.
  • 5王威,郗小宁.近地航天器轨道基础[M].长沙:国防科技大学出版社,2003:210-235.
  • 6Battin R H. An introduction to the mathematics and meth- ods of astrodynamics [ M ]. American Institute of Aero- nautics and Astronautics, 1999:34-43.
  • 7任萱.人造地球卫星轨道力学[M].长沙:国防科技大学出版社,1988..

二级参考文献1

共引文献39

同被引文献39

  • 1马丹山,王明海.弹道导弹小推力落点修正[J].上海航天,2008,25(3):16-18. 被引量:1
  • 2王辉,田劲松,张莉英.基于飞行时间的弹道导弹火力控制[J].火力与指挥控制,2005,30(4):85-87. 被引量:4
  • 3马丹山,刘新学,王力纲.闭路制导推力方向研究[J].飞行力学,2005,23(3):64-66. 被引量:2
  • 4白洪波,冯书兴,朱丽萍,任新霞.空间作战中固定时间轨道拦截的仿真研究[J].航天控制,2006,24(4):62-65. 被引量:11
  • 5Arlulkar P V, Naik S D. Solution based on dynamical approach for multiple-revolution Lambert probl[J]. J of Guidance, Control, and Dynamics, 2011, 34(3): 920-923.
  • 6Zhang G, Cao X B, Zhou D. Two-impulse cotangent rendezvous between coplanar elliptic and hyperbolic orbits[J]. J of Guidance, Control, and Dynamics, 2014, 37(3): 965-969.
  • 7Battin R H. Introduction to the mathemaics and methods of astrodynamics[M]. Reston: American Institute of Aeronautics and Astronautics, 1999: 325-417.
  • 8Zhang G, Wang D Z, Cao X B, et al. Minimum-time interception with a tangent impulse[J]. J of Aerospace Engineering, 2015, 28(2): 04014062.
  • 9Zarchan P. Kill vehicle guidance and control sizing for boost-phase intercept[J]. J of Guidance, Control, and Dynamics, 2010, 33(6): 1724-1731.
  • 10Wailliez S E. On Lambert's problem and the elliptic time of flight equation: A simple sem-analytical inversion method[J]. Advances in Space Research, 2014, 53(5): 890- 898.

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部