期刊文献+

全张量重力梯度数据误差分析及补偿 被引量:7

Error Analysis and Compensation of Full Tensor Gravity Gradiometer Measurements
下载PDF
导出
摘要 针对用于航空移动平台的高精度全张量重力梯度测量系统,深入研究了梯度仪12个加速度计按3个不同旋转轴圆盘形成差分组合的结构。在确认该结构具有有效抑制运动共模加速度、减少外界环境干扰、实现高精度探测优点的同时,着重分析了重力梯度仪测量误差的来源和影响。研究表明,主要影响包括仪器固有随机噪声和外界确定性噪声。为定量描述影响程度,推导了在航空动态环境下的测量方程,并分离出加速度计的性能不匹配、平台不稳定、圆盘转速不稳定3个主要固有因素,从时间域和频率域角度定量分析固有影响因素的噪声水平。试验分析表明,通过利用Simulink仿真系统可以获得固有因素产生的噪声水平,并提出抑制方案。针对搭载环境测量误差,还分析了实测飞行中姿态和质量的改变对重力梯度测量值造成的环境影响,提出了基于点质量源的自身梯度校正方法。 For the high precision full tensor gravity gradiometry (FTG )used in airborne moving platform,the authors study the difference composite structure of gradiometry,which have 1 2 accelerometers installed on three different rotation disc.Upon confirmation of the structure which can restrain the common mode acceleration,reduce the interference of extent environment and have the advantage of high precision detection,the authors analyze the error sources and influences in gradiometer measurements.Research shows that main effects include instrument inherent random noise and external deterministic noise. In order to describe the influence quantificationally,the authors derived the measuring equation of FTG in the dynamic environment,and analyzed the noise level of intrinsic factors in time domain and frequency domain, identified three main intrinsic factors:Accelerometer ’ sperformance mismatching;Platform instability and unstable disc rotating speed.Experiments using Simulink system can obtain the noise level of intrinsic factors and put forward the inhibition scheme. Aiming at the external deterministic noise,we also analyzed the influence of changing of attitude and quality in flight to measured gradients and put forward a method to correct the self-gradient based on a point mass.
出处 《吉林大学学报(地球科学版)》 EI CAS CSCD 北大核心 2014年第3期1003-1011,共9页 Journal of Jilin University:Earth Science Edition
基金 国家深部探测技术与实验研究专项项目(SinoProbe-09-01 201011078)
关键词 全张量重力梯度仪 动态环境 固有噪声 自身梯度校正 点质量源 full tensor gravity gradiometry dynamic environment inherent noise self-gradient correct point mass
  • 相关文献

参考文献18

  • 1DiFrancesco D, Grierson A, Kaputa A, et al. Gravity Gradiometer Systems: Advances and Challenges[J]. Geophysical Prospecting, 2009,57 (4) : 615 - 623.
  • 2Murphy C A. Recent Developments with Air-FTG [ C ]//ASEG-PESA Airborne Gravity 2010 Workshop. [S. l. ] : Geoscience Australia, 2010 : 142 - 151.
  • 3Houghton P,Lumley J,Barnes G,et al. A Comparison of Three Current Airborne Systems Designed to Measure the Earth ' s Gravitational Field and the Impact of Instrument Sensitivity on Mining Exploration[C]//SAGA-AEM 2004 Conference. [S. l. ]: South African Geophysical Association,2004.
  • 4李海兵,蔡体菁.旋转加速度计重力梯度仪误差分析[J].中国惯性技术学报,2009,17(5):525-528. 被引量:14
  • 5李海兵,蔡体菁.全张量重力梯度仪测量方程及误差分析[J].东南大学学报(自然科学版),2010,40(3):517-521. 被引量:10
  • 6涂良成,刘金全,王志伟,周泽兵.旋转重力梯度仪的加速度计动态调节方法与需求分析[J].中国惯性技术学报,2011,19(2):131-135. 被引量:15
  • 7O' Keefe G J, Lee J B, Turner R J, et al. Gravity Gradiometer: US, 5922951[P]. 1999 - 07 - 13.
  • 8Metzger T, Sieracki D L, Dosch D E. Gravity Gra- diometer System: US, 0064778 A1 [P]. 2009 - 03 - 12.
  • 9袁园.航空重力数据常用滤波方法对比研究[J].吉林大学学报(地球科学版),2010,40(S1):6-9. 被引量:3
  • 10Brett J. Theory of FTG Measurements[EB/OL]. [2011 - 09 - 20]. http://www.bellgeo. com.

二级参考文献46

  • 1蔡体菁,周百令.重力梯度仪的现状和前景[J].中国惯性技术学报,1999,7(1):41-44. 被引量:31
  • 2杨亚非,吴广玉,任顺清.提高加速度计标定精度的方法[J].中国惯性技术学报,1998,6(4):99-103. 被引量:7
  • 3Hofmeyer. Rotating accelerometer gradiometer[P]. US Patent No.5357802, 1994.
  • 4G J O'Keefe, J B Lee, R J Turner, et al. Gravity improvements to gravity gradiometers[P]. US Patent No.5922951, 1999.
  • 5G J O'Keefe. J B Lee. R J Turner. et al. Imorovements to gravitv gradiometer accelerometers[P]. US Patent. 5962782. 1999
  • 6E H Van Leeuwen, K G McCracken, J B Lee. Airborne gravity gradiometers[P]. US Patent No.6883372B2, 2005.
  • 7Moryl J. Advanced submarine navigation systems[J]. Sea Technology, 1996, 37(11): 6-9.
  • 8C Jekeli. A review of gravity gradiometer survey system data analyses[J]. Geophysics, 1993, 58(4): 508-514.
  • 9Tsai Tijing. A platformless inertial navigation system based on a canonical gravity gradiometer[J]. J. Appl. Maths. Mechs, 1998, 62(5): 819-822.
  • 10M Moody, H Paik, E Canavan. Three-axis superconducting gravity gradiometer for sensitive gravity experiments[J]. Review of Scientific Instruments, 2002, 73(11): 3957-3974.

共引文献57

同被引文献56

  • 1张金焕,李晓斌.航空重力梯度测量系统发展及现状[J].中国矿业,2011,20(S1):188-192. 被引量:4
  • 2蔡体菁,周百令.重力梯度仪的现状和前景[J].中国惯性技术学报,1999,7(1):41-44. 被引量:31
  • 3丁昊,蔡体菁.关于检测质量的4旋转加速度计信号叠加的频域分析[J].中国惯性技术学报,2014,12(2):167-171. 被引量:1
  • 4刘焱雄,彭琳,吴永亭,周兴华.超短基线水声定位系统校准方法研究[J].武汉大学学报(信息科学版),2006,31(7):610-612. 被引量:30
  • 5Murphy C A. The Air-IFG airborne gravity gradiometer system [ C ] //Airborne Gravity 2004-Abstracts from the ASEG-PESA Airborne Gravity 2004 Workshop: Geosci- ence Australian Record. 2004, 18: 7-14.
  • 6Dransfield M H, Lee J B. The FALCON airborne gravity gradiometer survey systems [ J ]. Airborne Gravity, 2004 : 15-19.
  • 7Genrich J F, Minster J B . Near-real reduction of ship- board gravity using Kalman-filtered GPS measurements [J]. Geophysics, 1991, 58 (12): 1971-1979.
  • 8de Oliveira Lyrio J C S, Tenorio L, Li Y. Efficient auto- matic denoising of gravity gradiometry data [ J ]. Geo- physics, 2004, 69 (3) : 772-782.
  • 9Pajot G, De Viron O, Diament M, et al. Noise reduction through joint processing of gravity and gravity gradient da- ta [J]. Geophysics, 2008, 73 (3): 123-134.
  • 10Mikhailov V, Pajot G, Diament M, et al. Tensor decon- volution: a method to locate equivalent sources from full tensor gravity data [ J ]. Geophysics, 2007, 72 ( 5 ) : 161-169.

引证文献7

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部