摘要
为了对双极器件在电离辐射环境下的损伤机理及加固技术进行深入的研究,对设计制作的不同工艺类型的栅控横向PNP双极晶体管进行了60Co-γ低剂量率辐照试验.结果表明:1)栅控双极晶体管的辐射特性具有很强的工艺相关性,钝化层的存在对于双极晶体管的辐射响应具有很大影响,有钝化层的器件在电离辐射环境中会产生更多的界面态,其抗辐射能力大大减弱;2)针对国产栅控横向PNP晶体管在低剂量率辐照时会发生峰值电流展宽效应,文中对展宽效应潜在机理进行了分析,并针对展宽效应提出了新的分离方法.这不但对设计抗辐射加固器件提供了依据,而且为进一步深入研究双极器件的低剂量率辐射损伤增强效应提供了强有力工具.
In order to study the total dose effect and hardness assurance technology for the bipolar devices, we have designed and fabricated different gate-controlled lateral PNP bipolar transistors by various technologies, and preformed60Co-γ low-dose rate irradiation. The test results show that: 1) Irradiation characteristics of the gate-controlled bipolar transistor are strongly dependent on the fabrication technology, and the passivation layer has a great influence on the irradiation response of the device. The device with a passivation layer will have more interface traps in ionizing radiation environments, and its resistance to ionizing irradiation is greatly weakened. 2) A domestic gated-controlled lateral PNP transistor exhibited a peak current broadening effect at low-dose rate irradiation. In this paper, we analyze the mechanism of the broadening effect, and put forward a new separation method for reducing the base current broadening effect, which not only provides the basis for the design of hardened devices, but also a powerful tool for the study of the enhanced low-dose rate sensitivity of the bipolar device.
出处
《物理学报》
SCIE
EI
CAS
CSCD
北大核心
2014年第11期218-223,共6页
Acta Physica Sinica