期刊文献+

高阶修正Camassa-Holm方程的Cauchy问题 被引量:1

Cauchy Problem of Higher-order Modified Camassa-Holm Equation
下载PDF
导出
摘要 主要证明一类高阶修正的Camassa-Holm方程拥有哈密顿结构和建立在H2(R)适定性结果.首先证明高阶修正的Camassa-Holm方程拥有两个重要的守恒律.然后利用这两个重要的守恒律证明高阶修正的Camassa-Holm方程拥有哈密顿结构.并且使用Kato理论,证明高阶修正的Camassa-Holm方程在Hs(R)(s>3/2)中是局部适定的;利用两个重要的守恒律得到了一个重要的先验估计.结合局部适定性结果以及先验估计,对于初值u0∈H2(R),证明高阶修正的Camassa-Holm方程在H2(R)中是整体适定的. In this paper, we mainly prove that the higher-order modified Camassa-Holm equation possesses the Hamitonian structure and establishes the global well-posedness result in H^2(R). Firstly, it is shown that the higher-order modified Camassa-Holm equation possesses two important conseravtion laws. Then, we prove that the higher-order modified Camassa- Holm equation possesses the Hamitonian structure with the aid of two important conservation laws. By using Kato's theory, we prove that the Cauehy problem for the higher-order modified Camassa-Holm equation is locally well-posed for the initial data in H^s(R)(s〉3/2). By using the two important conserved laws, we derive a prior estimate. Combining the prior estimate with the local well-posedness result, we derive the global well-posendess result of the Cauchy problem for the higher-order modified Camassa-Holm equation is globally well-posed for the initial data in H^2 (R).
作者 王红军 闫威
出处 《河南师范大学学报(自然科学版)》 CAS 北大核心 2014年第3期1-4,共4页 Journal of Henan Normal University(Natural Science Edition)
基金 河南省基础与前沿技术研究项目(122300410414 132300410432)
关键词 高阶修正的Camassa—Holm方程 哈密顿结构 守恒律 局部适定 整体适定 higher-order modified eamassa-Holm equation Hamiltonian structure eonseravtion laws local well-posedness global well-posedness
  • 相关文献

参考文献18

  • 1Camassa R, Holm D. An integrable shallow wateer equation with peaked solitons[J]. Phys Rev Lett, 1993(71):1661-1664.
  • 2Fokas A, Fuchssteiner B. Symplectic structures, their Bfiklund transformations and hereditray symmetries[J]. Phys D,1981(4):47-66.
  • 3Constantin A. On the Cauchy problem for the periodic Camassa-Holm equation[J]. J Diff Eqns, 1997 (10) :218-235.
  • 4Constantin A. Existence of permanent and breaking waves for a shallow water equation[J]. A geometric approach, Ann Inst Fourier (Grenoble), 2000 (50) : 321-362.
  • 5Constantin A, Escher J. Wave breaking for nonlinear nonlocal shallow water equations[J]. Acta Math, 1998,181:229-243.
  • 6Constantin A, Escher J. Well posedness, global existence and blow-up phenomena for a periodic quasi linear hyperbolic equation[J]. Comm Pure Appl Math, 1998,51 : 475-504.
  • 7Constantin A, Lannes D. The hydrodynamical relevance of the Camassa-Holm and Degasperis Procesi equations[J]. Arch Ration Mech Anal,2007,192 : 165-186.
  • 8Constantin A, Molinet L. Global weak solutions for a shallow water equation[J]. Comm Math Phys, 1998,211:45-61.
  • 9Constantin A, Mckean H. A shallow water equation on the circle[J]. Comm Pure Appl Math, 1999,52:949-982.
  • 10Constantin A, Strauss W. Stability of solitons[J]. Comm Pure Appl Math,2000,53: 603-610.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部